scispace - formally typeset
Search or ask a question
Author

Kamal Al-Haddad

Bio: Kamal Al-Haddad is an academic researcher from École de technologie supérieure. The author has contributed to research in topics: Power factor & AC power. The author has an hindex of 61, co-authored 828 publications receiving 21017 citations. Previous affiliations of Kamal Al-Haddad include Indian Institute of Technology Delhi & École Polytechnique de Montréal.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of active filter configurations, control strategies, selection of components, other related economic and technical considerations, and their selection for specific applications.
Abstract: Active filtering of electric power has now become a mature technology for harmonic and reactive power compensation in two-wire (single phase), three-wire (three phase without neutral), and four-wire (three phase with neutral) AC power networks with nonlinear loads. This paper presents a comprehensive review of active filter (AF) configurations, control strategies, selection of components, other related economic and technical considerations, and their selection for specific applications. It is aimed at providing a broad perspective on the status of AF technology to researchers and application engineers dealing with power quality issues. A list of more than 200 research publications on the subject is also appended for a quick reference.

2,311 citations

Journal ArticleDOI
TL;DR: This paper presents an exhaustive review of three-phase improved power quality AC-DC converters configurations, control strategies, selection of components, comparative factors, recent trends, their suitability, and selection for specific applications.
Abstract: Solid-state switch-mode rectification converters have reached a matured level for improving power quality in terms of power-factor correction (PFC), reduced total harmonic distortion at input AC mains and precisely regulated DC output in buck, boost, buck-boost and multilevel modes with unidirectional and bidirectional power flow. This paper deals with a comprehensive review of improved power quality converters (IPQCs) configurations, control approaches, design features, selection of components, other related considerations, and their suitability and selection for specific applications. It is targeted to provide a wide spectrum on the status of IPQC technology to researchers, designers and application engineers working on switched-mode AC-DC converters. A classified list of more than 450 research publications on the state of art of IPQC is also given for a quick reference.

1,691 citations

Book
12 Dec 2014
TL;DR: Electrical Generation and Distribution Systems and Power Quality DisturbancesTerrorism and the Electric Power Delivery SystemPower Quality in Power Systems and Electrical MachinesAdvances in Electrical and Computer TechnologiesPower Quality Issues in Distributed GenerationPower QualityPower System HarmonicsUnderstanding Power Quality ProblemsPower Quality problems and Its Mitigation TechniquesPower Quality Problems and Mitigation Methods: Case Study at DBBFSignal Processing of Power QualitydisturbancesElectric Power QualityMicrogrid Architectures, Control and Protection MethodsPower Quality issues.
Abstract: Electrical Generation and Distribution Systems and Power Quality DisturbancesTerrorism and the Electric Power Delivery SystemPower Quality in Power Systems and Electrical MachinesAdvances in Electrical and Computer TechnologiesPower Quality Issues in Distributed GenerationPower QualityPower System HarmonicsUnderstanding Power Quality ProblemsPower Quality Problems and Its Mitigation TechniquesPower Quality Problems and Mitigation Methods: Case Study at DBBFSignal Processing of Power Quality DisturbancesElectric Power QualityMicrogrid Architectures, Control and Protection MethodsPower Quality IssuesComputing Algorithms with Applications in EngineeringICCCE 2020Renewable and Efficient Electric Power SystemsHandbook of Research on New Solutions and Technologies in Electrical Distribution NetworksGeomagnetic Disturbances Impacts on Power SystemsComputational Paradigm Techniques for Enhancing Electric Power QualityEmerging Trends in Electrical, Communications and Information TechnologiesPower Quality in Electrical SystemsElectric Power SystemsPower Quality in Modern Power SystemsPower System Protection in Smart Grid EnvironmentIntegration of Renewable Energy Sources with Smart Grid7th IEEE India International Conference on Power ElectronicsPower Electronics and Power QualityInstantaneous Power Theory and Applications to Power ConditioningElectrical Power Systems QualityHandbook on Battery Energy Storage SystemLoad Flow Optimization and Optimal Power FlowHandbook of Power QualityPower Quality in Power Systems and Electrical MachinesDistribution Reliability and Power QualityPower Quality Enhancement Using Custom Power DevicesPower System Harmonics Analysis, Effects and Mitigation Solutions for Power Quality ImprovementPower QualityBow Ties in Process Safety and Environmental ManagementPower System Control Under Cascading Failures

713 citations

Journal ArticleDOI
TL;DR: A novel approach is proposed, which allows chattering reduction on control input while keeping high tracking performance of the controller in steady-state regime by designing a nonlinear reaching law by using an exponential function that dynamically adapts to the variations of the controlled system.
Abstract: In this paper, sliding-mode control is applied on multi-input/multi-output (MIMO) nonlinear systems. A novel approach is proposed, which allows chattering reduction on control input while keeping high tracking performance of the controller in steady-state regime. This approach consists of designing a nonlinear reaching law by using an exponential function that dynamically adapts to the variations of the controlled system. Experimental study was focused on a MIMO modular robot arm. Experimental results are presented to show the effectiveness of the proposed approach, regarding particularly the chattering reduction on control input in steady-state regime.

424 citations

Journal ArticleDOI
TL;DR: A comparative analysis of different energy management schemes for a fuel-cell-based emergency power system of a more-electric aircraft and the main criteria for performance comparison are the hydrogen consumption, the state of charges of the batteries/supercapacitors, and the overall system efficiency.
Abstract: This paper presents a comparative analysis of different energy management schemes for a fuel-cell-based emergency power system of a more-electric aircraft. The fuel-cell hybrid system considered in this paper consists of fuel cells, lithium-ion batteries, and supercapacitors, along with associated dc/dc and dc/ac converters. The energy management schemes addressed are state of the art and are most commonly used energy management techniques in fuel-cell vehicle applications, and they include the following: the state machine control strategy, the rule-based fuzzy logic strategy, the classical proportional-integral control strategy, the frequency decoupling/fuzzy logic control strategy, and the equivalent consumption minimization strategy. The main criteria for performance comparison are the hydrogen consumption, the state of charges of the batteries/supercapacitors, and the overall system efficiency. Moreover, the stresses on each energy source, which impact their life cycle, are measured using a new approach based on the wavelet transform of their instantaneous power. A simulation model and an experimental test bench are developed to validate all analysis and performances.

403 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

2,327 citations

01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: In this paper, the most relevant characteristics of multilevel converters, to motivate possible solutions, and to show that energy companies have to bet on these converters as a good solution compared with classic two-level converters.
Abstract: This work is devoted to review and analyze the most relevant characteristics of multilevel converters, to motivate possible solutions, and to show that we are in a decisive instant in which energy companies have to bet on these converters as a good solution compared with classic two-level converters. This article presents a brief overview of the actual applications of multilevel converters and provides an introduction of the modeling techniques and the most common modulation strategies. It also addresses the operational and technological issues.

1,847 citations