scispace - formally typeset
Search or ask a question
Author

Kan Wang

Bio: Kan Wang is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Monte Carlo method & Imaging phantom. The author has an hindex of 5, co-authored 7 publications receiving 69 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A singular-value analysis method was used to demonstrate the utility and advantages of using the NIR-II for FMT, and experiments showed an improvement in the spatial resolution in phantom studies.
Abstract: Fluorescence molecular tomography (FMT), an in vivo noninvasive imaging technology, can provide localization and quantification information for deep fluorophores. Light at wavelengths in the near-infrared (NIR-I) window from 650 nm to 950 nm has conventionally been chosen for FMT. In this study, we introduced longer NIR wavelengths within the 1100 nm to 1400 nm range, known as the "second NIR spectral window" (NIR-II). A singular-value analysis method was used to demonstrate the utility and advantages of using the NIR-II for FMT, and experiments showed an improvement in the spatial resolution in phantom studies.

34 citations

Journal ArticleDOI
TL;DR: Phantom experiments demonstrate that FMT based on IRL1 can obtain high-quality images and thus has the potential to observe dynamic changes in fluorescence-targeted molecules.
Abstract: In fluorescence molecular tomography (FMT), many artifacts exist in the reconstructed images because of the inherently ill-posed nature of the FMT inverse problem, especially with limited measurements. A new method based on iterative reweighted L1 (IRL1) regularization is proposed for reducing artifacts with limited measurements. Phantom experiments demonstrate that the reconstructed images have fewer artifacts even with very limited measurements. This indicates that FMT based on IRL1 can obtain high-quality images and thus has the potential to observe dynamic changes in fluorescence-targeted molecules.

27 citations

Journal ArticleDOI
TL;DR: A cocalibration method is proposed for the combined system of FMT&mCT, which could be performed with no restriction on the system geometry, calibration phantoms or imaging objects.
Abstract: Purpose: A combined system of fluorescence molecular tomography and microcomputed tomography (FMT&mCT) can provide molecular and anatomical information of small animals in a single study with intrinsically coregistered images. The anatomical information provided by the mCT subsystem is commonly used as a reference to locate the fluorophore distribution or asa priori structural information to improve the performance of FMT. Therefore, the transformation between the coordinate systems of the subsystem needs to be determined in advanced. Methods: A cocalibration method for the combined system of FMT&mCT is proposed. First, linear models are adopted to describe the galvano mirrors and the charge-coupled device(CCD)camera in the FMT subsystem. Second, the position and orientation of the galvano mirrors are determined with the input voltages of the galvano mirrors and the markers, whose positions are predetermined. The position, orientation and normalized pixel size of the CCDcamera are obtained by analysing the projections of a point-like marker at different positions. Finally, the orientation and position of sources and the corresponding relationship between the detectors and their projections on the image plane are predicted. Because the positions of the markers are acquired with mCT, the registration of the FMT and mCT could be realized by direct image fusion. Results: The accuracy and consistency of this method in the presence of noise is evaluated by computer simulation. Next, a practical implementation for an experimental FMT&mCT system is carried out and validated. The maximum prediction error of the source positions on the surface of a cylindrical phantom is within 0.375 mm and that of the projections of a point-like marker is within 0.629 pixel. Finally, imaging experiments of the fluorophore distribution in a cylindrical phantom and a phantom with a complex shape demonstrate the feasibility of the proposed method. Conclusions: This method is universal in FMT&mCT, which could be performed with no restriction on the system geometry, calibration phantoms or imaging objects.

9 citations

Journal ArticleDOI
TL;DR: A path-history-based decoupled fluorescence Monte Carlo (dfMC) method is described, and the results show that the dfMC method is more accurate and efficient than the pfMC method in heterogeneous medium.
Abstract: The path-history-based fluorescence Monte Carlo method used for fluorescence tomography imaging reconstruction has attracted increasing attention. In this paper, we first validate the standard fluorescence Monte Carlo (sfMC) method by experimenting with a cylindrical phantom. Then, we describe a path-history-based decoupled fluorescence Monte Carlo (dfMC) method, analyze different perturbation fluorescence Monte Carlo (pfMC) methods, and compare the calculation accuracy and computational efficiency of the dfMC and pfMC methods using the sfMC method as a reference. The results show that the dfMC method is more accurate and efficient than the pfMC method in heterogeneous medium.

8 citations

Journal ArticleDOI
TL;DR: Simulations and phantom experiments show that this method not only effectively reduces the loss of high-resolution structural information of micro-CT in irregular boundaries and increases the accuracy of the FMT algorithm in both forward and inverse problems, but the method also has a small Jacobian matrix and a short reconstruction time.
Abstract: The study of dual-modality technology which combines microcomputed tomography (micro-CT) and fluorescence molecular tomography (FMT) has become one of the main focuses in FMT. However, because of the diversity of the optical properties and irregular geometry for small animals, a reconstruction method that can effectively utilize the high-resolution structural information of micro-CT for tissue with arbitrary optical properties is still one of the most challenging problems in FMT. We develop a micro-CT-guided non-equal voxel Monte Carlo method for FMT reconstruction. With the guidance of micro-CT, precise voxel binning can be conducted on the irregular boundary or region of interest. A modified Laplacian regularization method is also proposed to accurately reconstruct the distribution of the fluorescent yield for non-equal space voxels. Simulations and phantom experiments show that this method not only effectively reduces the loss of high-resolution structural information of micro-CT in irregular boundaries and increases the accuracy of the FMT algorithm in both forward and inverse problems, but the method also has a small Jacobian matrix and a short reconstruction time. At last, we performed small animal imaging to validate our method.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The developed NIR‐II fluorescence microscopy will become a powerful imaging technique for deep tissue imaging without any physical sectioning or clearing treatment of the tissue.
Abstract: Greatly reduced scattering in the second near-infrared (NIR-II) region (1000-1700 nm) opens up many new exciting avenues of bioimaging research, yet NIR-II fluorescence imaging is mostly implemented by using nontargeted fluorophores or wide-field imaging setups, limiting the signal-to-background ratio and imaging penetration depth due to poor specific binding and out-of-focus signals. A newly developed high-performance NIR-II bioconjugate enables targeted imaging of a specific organ in the living body with high quality. Combined with a home-built NIR-II confocal set-up, the enhanced imaging technique allows 900 µm-deep 3D organ imaging without tissue clearing techniques. Bioconjugation of two hormones to nonoverlapping NIR-II fluorophores facilitates two-color imaging of different receptors, demonstrating unprecedented multicolor live molecular imaging across the NIR-II window. This deep tissue imaging of specific receptors in live animals allows development of noninvasive molecular imaging of multifarious models of normal and neoplastic organs in vivo, beyond the traditional visible to NIR-I range. The developed NIR-II fluorescence microscopy will become a powerful imaging technique for deep tissue imaging without any physical sectioning or clearing treatment of the tissue.

137 citations

Journal ArticleDOI
TL;DR: The advantages of the natural enzyme system and SDT are integrated to develop a novel approach for effective non-invasive treatment of cancer with the adept coalescence of biology with nanotechnology.
Abstract: Non-invasive sonodynamic therapy (SDT) was developed because of its advantages of high penetration depth and low side effects; however, tumor hypoxia greatly restricts its therapeutic effect. In this study, we aimed to develop ideal O2 self-supplementing nanoparticles for imaging-guided enhanced sonodynamic therapy of tumors with the adept coalescence of biology with nanotechnology. Methods: Based on the natural enzyme system of red blood cells (RBC), biomimetic nanoparticles (QD@P)Rs were fabricated by encapsulating Ag2S quantum dots (QD) in RBC vesicle membranes. The anti-tumor drug PEITC was employed to increase the intracellular H2O2 concentration in tumor cells. Results: In vitro and in vivo experiments demonstrated excellent biocompatibility and prolonged blood circulation of (QD@P)Rs. Following oral administration of PEITC in mice to improve the H2O2 concentration, the enzyme in the nanoprobe catalyzed endogenous H2O2 to increase O2 content and effectively alleviate tumor hypoxia. Triggered by ultrasound under the guidance of fluorescence imaging, (QD@P)Rs generated reactive oxygen species (ROS) to induce tumor cell death, and the increased content of O2 significantly enhanced the effect of SDT. Conclusion: Ag2S QDs were used, for the first time, as a sonosensitizer in the SDT field. In this study, we integrated the advantages of the natural enzyme system and SDT to develop a novel approach for effective non-invasive treatment of cancer.

101 citations

Journal ArticleDOI
TL;DR: The findings demonstrate that this novel nanoplatform for targeted image-guided treatment of tumor and tactfully integrated chemotherapy, photothermal therapy (PTT) and gene therapy might provide an insight for cancer theranostics.
Abstract: Currently, a large number of anti-tumor drug delivery systems have been widely used in cancer therapy. However, due to the molecular complexity and multidrug resistance of tumors, monotherapies remain suboptimal. Thus, this study aimed to develop a multifunctional theranostic nanoplatform for effective cancer therapy. Methods: Folic acid-modified silver sulfide@mesoporous silica core-shell nanoparticle was first modified with desthiobiotin (db) on the surface, then doxorubicin (DOX) was loaded into pore. Avidin was employed as "gatekeeper" to prevent leakage of DOX via desthiobiotin-avidin interaction. Db-modified survivin antisense oligonucleotide (db-DNA) which could inhibit survivin expression was then grafted on avidin at the outer layer of nanoparticle. DOX release and db-DNA dissociation were simultaneously triggered by overexpressing biotin in cancer cells, then combining PTT from Ag2S QD to inhibit tumor growth. Results: This nanoprobe had satisfactory stability and photothermal conversion efficiency up to 33.86% which was suitable for PTT. Due to the good targeting ability and fluorescent anti-bleaching, its signal still existed at the tumor site after tail vein injection of probe into HeLa tumor-bearing nude mice for 48 h. In vitro and in vivo antitumor experiments both demonstrated that drug, gene and photothermal synergistic therapy significantly enhanced antitumor efficacy with minimal systemic toxicity. Conclusion: Our findings demonstrate that this novel nanoplatform for targeted image-guided treatment of tumor and tactfully integrated chemotherapy, photothermal therapy (PTT) and gene therapy might provide an insight for cancer theranostics.

44 citations

Journal ArticleDOI
TL;DR: In vitro and in vivo toxicity results showed that the PC10A/Ag2S QD/PTX hydrogel presented excellent biocompatibility and the combined therapy could effectively suppress the growth of SKOV3 ovarian carcinoma tumor.
Abstract: An injectable multifunctional hydrogel based on an engineered coiled-coil polypeptide, Ag2S quantum dots (QDs), and paclitaxel (PTX) has been developed for sustained chemo-photothermal therapy. Oil-soluble Ag2S QDs and PTX were first loaded into nanogels formed with engineered polypeptide PC10A by ultrasonic treatment to prepare PC10A/Ag2S QD/PTX nanogels. The multifunctional PC10A/Ag2S QD/PTX hydrogels were prepared by dissolving the PC10A/Ag2S QD/PTX nanogels into the PC10A hydrogel. The PC10A/Ag2S QD/PTX hydrogel can be injected directly into the site of tumors. In vitro and in vivo toxicity results showed that the PC10A/Ag2S QD/PTX hydrogel presented excellent biocompatibility. Compared with single near-infrared photothermal therapy and chemotherapy, the combined therapy could effectively suppress the growth of SKOV3 ovarian carcinoma tumor. In addition, real-time monitoring of the in vivo degradation of the PC10A/Ag2S QD/PTX hydrogel was achieved by near-infrared fluorescence imaging and photoacoustic imaging. These results demonstrated that this injectable multifunctional PC10A/Ag2S QD/PTX hydrogel has the potential as a theranostic platform for sustained cancer treatments.

35 citations

Journal ArticleDOI
TL;DR: Which imaging modalities have been successfully used for in vivo cell tracking and how this challenging task has benefitted from combining macroscopic with microscopic techniques are reviewed.

28 citations