scispace - formally typeset
Search or ask a question
Author

Kaneaki Tsuzaki

Bio: Kaneaki Tsuzaki is an academic researcher from National Institute for Materials Science. The author has contributed to research in topics: Austenite & Grain boundary. The author has an hindex of 53, co-authored 419 publications receiving 10930 citations. Previous affiliations of Kaneaki Tsuzaki include Kyushu University & Mitsubishi Heavy Industries.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed account of these improvements, focusing specifically on microstructure evolution during processing, and expander expansion during the fabrication of dual-phase alloys.
Abstract: Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on (a) microstructure evolution during processing, (b) exp...

438 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution scanning electron microscopy-based damage quantification technique has been employed to identify strain regimes where damage nucleation and damage growth take place, both with and without hydrogen precharging.

327 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of hydrogen on the fracture behavior of quenched and tempered AISI 4135 steel at 1450 MPa was investigated by means of slow strain rate tests on smooth and circumferentially-notched round-bar specimens.

306 citations

Journal ArticleDOI
23 May 2008-Science
TL;DR: An inverse temperature dependence of toughness in an ultrahigh-strength bcc steel with an ultrafine elongated ferrite grain structure that was processed by a thermomechanical treatment without the addition of a large amount of an alloying element is observed.
Abstract: Materials are typically ductile at higher temperatures and become brittle at lower temperatures. In contrast to the typical ductile-to-brittle transition behavior of body-centered cubic (bcc) steels, we observed an inverse temperature dependence of toughness in an ultrahigh-strength bcc steel with an ultrafine elongated ferrite grain structure that was processed by a thermomechanical treatment without the addition of a large amount of an alloying element. The enhanced toughness is attributed to a delamination that was a result of crack branching on the aligned {100} cleavage planes in the bundles of the ultrafine elongated ferrite grains strengthened by nanometer-sized carbides. In the temperature range from 60° to –60°C, the yield strength was greater, leading to the enhancement of the toughness.

302 citations

Journal ArticleDOI
10 Mar 2017-Science
TL;DR: It is shown here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized and the exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.
Abstract: Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.

270 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
09 Jun 2016-Nature
TL;DR: In this metastability-engineering strategy, a transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA) is designed, which combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-ENTropy alloys.
Abstract: Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase) This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys

2,403 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of the new microstructures produced by two types of dynamic recrystallization is reviewed, including those brought about by severe plastic deformation (SPD).

1,777 citations