scispace - formally typeset
Search or ask a question
Author

Kang-Kuen Ni

Bio: Kang-Kuen Ni is an academic researcher from Harvard University. The author has contributed to research in topics: Ground state & Optical tweezers. The author has an hindex of 28, co-authored 80 publications receiving 4780 citations. Previous affiliations of Kang-Kuen Ni include University of Colorado Boulder & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
10 Oct 2008-Science
TL;DR: An ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules is created using a single step of STIRAP with two-frequency laser irradiation to coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential.
Abstract: A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential The polar molecular gas has a peak density of 1012 per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0052(2) Debye (1 Debye = 3336 × 10–30 coulomb-meters) for the triplet rovibrational ground state and 0566(17) Debye for the singlet rovibrational ground state

1,466 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: Experimental evidence for exothermic atom-exchange chemical reactions is reported, starting with an optically trapped near–quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state.
Abstract: How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single partial-wave scattering, and quantum threshold laws provide a clear understanding of the molecular reactivity under a vanishing collision energy? Starting with an optically trapped near-quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules were prepared in a single quantum state at a temperature of a few hundred nanokelvin, we observed p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a short-range chemical reaction with a probability near unity. When these molecules were prepared in two different internal states or when molecules and atoms were brought together, the reaction rates were enhanced by a factor of 10 to 100 as a result of s-wave scattering, which does not have a centrifugal barrier. The measured rates agree with predicted universal loss rates related to the two-body van der Waals length.

757 citations

Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: It is shown how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules, and how this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules.
Abstract: Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. Here, dipolar collisions in an ultracold gas of fermionic potassium–rubidium molecules have been experimentally observed. The results show how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules.

467 citations

Journal ArticleDOI
13 Sep 2019-Science
TL;DR: In this paper, an optical tweezer array of laser-cooled calcium monofluoride molecules has been used to study ground-state collisions of ultracold molecules in the presence and absence of near-resonant light.
Abstract: Ultracold molecules have important applications that range from quantum simulation and computation to precision measurements probing physics beyond the Standard Model. Optical tweezer arrays of laser-cooled molecules, which allow control of individual particles, offer a platform for realizing this full potential. In this work, we report on creating an optical tweezer array of laser-cooled calcium monofluoride molecules. This platform has also allowed us to observe ground-state collisions of laser-cooled molecules both in the presence and absence of near-resonant light.

251 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the efficient transfer of loosely bound heteronuclear molecules into more deeply bound energy levels, indicating a route towards producing dense ensembles of cold polar molecules.
Abstract: A rich internal structure and long-range interactions between them make molecules with non-vanishing dipole moments interesting for many applications An experiment demonstrating the efficient transfer of loosely bound heteronuclear molecules into more deeply bound energy levels indicates a route towards producing dense ensembles of cold polar molecules

233 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

2,642 citations

01 May 2009
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

1,531 citations

Journal ArticleDOI
10 Oct 2008-Science
TL;DR: An ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules is created using a single step of STIRAP with two-frequency laser irradiation to coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential.
Abstract: A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential The polar molecular gas has a peak density of 1012 per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0052(2) Debye (1 Debye = 3336 × 10–30 coulomb-meters) for the triplet rovibrational ground state and 0566(17) Debye for the singlet rovibrational ground state

1,466 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the recent theoretical and experimental advances in the study of ultra-cold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases is presented.
Abstract: This paper reviews the recent theoretical and experimental advances in the study of ultra-cold gases made of bosonic particles interacting via the long-range, anisotropic dipole–dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultra-cold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose–Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices. (Some figures in this article are in colour only in the electronic version)

1,230 citations