scispace - formally typeset
Search or ask a question
Author

Kaoru Ota

Bio: Kaoru Ota is an academic researcher from Muroran Institute of Technology. The author has contributed to research in topics: Computer science & Cloud computing. The author has an hindex of 46, co-authored 247 publications receiving 7638 citations. Previous affiliations of Kaoru Ota include Shanghai Jiao Tong University & University of Aizu.


Papers
More filters
Journal ArticleDOI
TL;DR: This article first introduces deep learning for IoTs into the edge computing environment, and designs a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing.
Abstract: Deep learning is a promising approach for extracting accurate information from raw sensor data from IoT devices deployed in complex environments Because of its multilayer structure, deep learning is also appropriate for the edge computing environment Therefore, in this article, we first introduce deep learning for IoTs into the edge computing environment Since existing edge nodes have limited processing capability, we also design a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing In the performance evaluation, we test the performance of executing multiple deep learning tasks in an edge computing environment with our strategy The evaluation results show that our method outperforms other optimization solutions on deep learning for IoT

1,270 citations

Journal ArticleDOI
TL;DR: This paper proposes a deep learning based classification model, which can find the possible defective products in the manufacture inspection system with higher accuracy, and adapts the convolutional neural network model to the fog computing environment, which significantly improves its computing efficiency.
Abstract: With the rapid development of Internet of things devices and network infrastructure, there have been a lot of sensors adopted in the industrial productions, resulting in a large size of data. One of the most popular examples is the manufacture inspection, which is to detect the defects of the products. In order to implement a robust inspection system with higher accuracy, we propose a deep learning based classification model in this paper, which can find the possible defective products. As there may be many assembly lines in one factory, one huge problem in this scenario is how to process such big data in real time. Therefore, we design our system with the concept of fog computing. By offloading the computation burden from the central server to the fog nodes, the system obtains the ability to deal with extremely large data. There are two obvious advantages in our system. The first one is that we adapt the convolutional neural network model to the fog computing environment, which significantly improves its computing efficiency. The other one is that we work out an inspection model, which can simultaneously indicate the defect type and its degree. The experiments well prove that the proposed method is robust and efficient.

335 citations

Journal ArticleDOI
TL;DR: The most important innovation of ActiveTrust is that it avoids black holes through the active creation of a number of detection routes to quickly detect and obtain nodal trust and thus improve the data route security.
Abstract: Wireless sensor networks (WSNs) are increasingly being deployed in security-critical applications Because of their inherent resource-constrained characteristics, they are prone to various security attacks, and a black hole attack is a type of attack that seriously affects data collection To conquer that challenge, an active detection-based security and trust routing scheme named ActiveTrust is proposed for WSNs The most important innovation of ActiveTrust is that it avoids black holes through the active creation of a number of detection routes to quickly detect and obtain nodal trust and thus improve the data route security More importantly, the generation and the distribution of detection routes are given in the ActiveTrust scheme, which can fully use the energy in non-hotspots to create as many detection routes as needed to achieve the desired security and energy efficiency Both comprehensive theoretical analysis and experimental results indicate that the performance of the ActiveTrust scheme is better than that of the previous studies ActiveTrust can significantly improve the data route success probability and ability against black hole attacks and can optimize network lifetime

290 citations

Journal ArticleDOI
TL;DR: This paper studies the deployment of D2D communications as an underlay to long-term evolution-advanced (LTE-A) networks based on novel architectures such as cloud radio access network (C-RAN).
Abstract: Device-to-device (D2D) communication is a key enabler to facilitate the realization of the Internet of Things (IoT). In this paper, we study the deployment of D2D communications as an underlay to long-term evolution-advanced (LTE-A) networks based on novel architectures such as cloud radio access network (C-RAN). The challenge is that both energy efficiency (EE) and quality of service (QoS) are severely degraded by the strong intracell and intercell interference due to dense deployment and spectrum reuse. To tackle this problem, we propose an energy-efficient resource allocation algorithm through joint channel selection and power allocation design. The proposed algorithm has a hybrid structure that exploits the hybrid architecture of C-RAN: distributed remote radio heads (RRHs) and centralized baseband unit (BBU) pool. The distributed resource allocation problem is modeled as a noncooperative game, and each player optimizes its EE individually with the aid of distributed RRHs. We transform the nonconvex optimization problem into a convex one by applying constraint relaxation and nonlinear fractional programming. We propose a centralized interference mitigation algorithm to improve the QoS performance. The centralized algorithm consists of an interference cancellation technique and a transmission power constraint optimization technique, both of which are carried out in the centralized BBU pool. The achievable performance of the proposed algorithm is analyzed through simulations, and the implementation issues and complexity analysis are discussed in detail.

243 citations

Journal ArticleDOI
TL;DR: This paper employs the Gale–Shapley algorithm to match D2D pairs with cellular UEs, which is proved to be stable and weak Pareto optimal, and extends the algorithm to address scalability issues in large-scale networks by developing tie-breaking and preference-deletion-based matching rules.
Abstract: Energy-efficiency (EE) is critical for device-to-device (D2D) enabled cellular networks due to limited battery capacity and severe cochannel interference. In this paper, we address the EE optimization problem by adopting a stable matching approach. The NP-hard joint resource allocation problem is formulated as a one-to-one matching problem under two-sided preferences, which vary dynamically with channel states and interference levels. A game-theoretic approach is employed to analyze the interactions and correlations among user equipments (UEs), and an iterative power allocation algorithm is developed to establish mutual preferences based on nonlinear fractional programing. We then employ the Gale–Shapley algorithm to match D2D pairs with cellular UEs, which is proved to be stable and weak Pareto optimal. We provide a theoretical analysis and description for implementation details and algorithmic complexity. We also extend the algorithm to address scalability issues in large-scale networks by developing tie-breaking and preference-deletion-based matching rules. Simulation results validate the theoretical analysis and demonstrate that significant performance gains of average EE and matching satisfactions can be achieved by the proposed algorithm.

215 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations