scispace - formally typeset
Search or ask a question
Author

Kaprea F. Johnson

Bio: Kaprea F. Johnson is an academic researcher from Virginia Commonwealth University. The author has contributed to research in topics: Mental health & Interprofessional education. The author has an hindex of 12, co-authored 51 publications receiving 979 citations. Previous affiliations of Kaprea F. Johnson include Pennsylvania State University & Old Dominion University.


Papers
More filters
Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2230 moreInstitutions (144)
TL;DR: The observed (expected) upper limit on the invisible branching fraction at 0.58 (0.44) is interpreted in terms of a Higgs-portal model of dark matter interactions.
Abstract: A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a $b\bar{b}$ quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at $m_H$=125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.

246 citations

Journal ArticleDOI
S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2195 moreInstitutions (142)
TL;DR: In this article, the mass limits for the Randall-Sundrum graviton model in the dijet channel were established at the 95% confidence level on the production cross-section of hypothetical new particles decaying to quark-quark, quarkgluon, or gluon-gluon final states.
Abstract: Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions at sqrt(s) = 8 TeV. The data sample corresponds to an integrated luminosity of 4.0 inverse femtobarns, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall-Sundrum graviton model in the dijet channel.

124 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2295 moreInstitutions (194)
TL;DR: In this article, the authors performed searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar.
Abstract: Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 359 fb(-1) Data and predictions from the standard model are in agreement within uncertainties For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling

121 citations

S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2195 moreInstitutions (142)
01 Jun 2013
TL;DR: In this paper, the mass limits for the Randall-Sundrum graviton model in the dijet channel were established at the 95% confidence level on the production cross-section of hypothetical new particles decaying to quark-quark, quarkgluon, or gluon-gluon final states.
Abstract: Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions at sqrt(s) = 8 TeV. The data sample corresponds to an integrated luminosity of 4.0 inverse femtobarns, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall-Sundrum graviton model in the dijet channel.

107 citations

Journal ArticleDOI
S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2164 moreInstitutions (140)
27 Dec 2012
TL;DR: In this article, a search for heavy, right-handed muon neutrinos, Nμ and WR bosons, which arise in the left-right symmetric extensions of the standard model, is presented.
Abstract: Results are presented from a search for heavy, right-handed muon neutrinos, Nμ, and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WR mass, dependent on the value of MWR. The excluded region in the two-dimensional (MWR, MNμ) mass plane extends to MWR=2.5 TeV.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Journal ArticleDOI
05 Feb 1897-Science

3,125 citations

Journal Article
TL;DR: This sales letter may not influence you to be smarter, but the book that this research methods in social relations will evoke you to being smarter.
Abstract: This sales letter may not influence you to be smarter, but the book that we offer will evoke you to be smarter. Yeah, at least you'll know more than others who don't. This is what called as the quality life improvisation. Why should this research methods in social relations? It's because this is your favourite theme to read. If you like this theme about, why don't you read the book to enrich your discussion?

2,382 citations

Journal ArticleDOI
TL;DR: In this article, a combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented.
Abstract: Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

1,193 citations

Journal ArticleDOI
Sergey Alekhin, Wolfgang Altmannshofer1, Takehiko Asaka2, Brian Batell3, Fedor Bezrukov4, Kyrylo Bondarenko5, Alexey Boyarsky5, Ki-Young Choi6, Cristóbal Corral7, Nathaniel Craig8, David Curtin9, Sacha Davidson10, Sacha Davidson11, André de Gouvêa12, Stefano Dell'Oro, Patrick deNiverville13, P. S. Bhupal Dev14, Herbi K. Dreiner15, Marco Drewes16, Shintaro Eijima17, Rouven Essig18, Anthony Fradette13, Björn Garbrecht16, Belen Gavela19, Gian F. Giudice3, Mark D. Goodsell20, Mark D. Goodsell21, Dmitry Gorbunov22, Stefania Gori1, Christophe Grojean23, Alberto Guffanti24, Thomas Hambye25, Steen Honoré Hansen24, Juan Carlos Helo7, Juan Carlos Helo26, Pilar Hernández27, Alejandro Ibarra16, Artem Ivashko28, Artem Ivashko5, Eder Izaguirre1, Joerg Jaeckel29, Yu Seon Jeong30, Felix Kahlhoefer, Yonatan Kahn31, Andrey Katz3, Andrey Katz32, Andrey Katz33, Choong Sun Kim30, Sergey Kovalenko7, Gordan Krnjaic1, Valery E. Lyubovitskij34, Valery E. Lyubovitskij35, Valery E. Lyubovitskij36, Simone Marcocci, Matthew McCullough3, David McKeen37, Guenakh Mitselmakher38, Sven Moch39, Rabindra N. Mohapatra9, David E. Morrissey40, Maksym Ovchynnikov28, Emmanuel A. Paschos, Apostolos Pilaftsis14, Maxim Pospelov13, Maxim Pospelov1, Mary Hall Reno41, Andreas Ringwald, Adam Ritz13, Leszek Roszkowski, Valery Rubakov, Oleg Ruchayskiy17, Oleg Ruchayskiy24, Ingo Schienbein42, Daniel Schmeier15, Kai Schmidt-Hoberg, Pedro Schwaller3, Goran Senjanovic43, Osamu Seto44, Mikhail Shaposhnikov17, Lesya Shchutska38, J. Shelton45, Robert Shrock18, Brian Shuve1, Michael Spannowsky46, Andrew Spray47, Florian Staub3, Daniel Stolarski3, Matt Strassler33, Vladimir Tello, Francesco Tramontano48, Anurag Tripathi, Sean Tulin49, Francesco Vissani, Martin Wolfgang Winkler15, Kathryn M. Zurek50, Kathryn M. Zurek51 
Perimeter Institute for Theoretical Physics1, Niigata University2, CERN3, University of Connecticut4, Leiden University5, Korea Astronomy and Space Science Institute6, Federico Santa María Technical University7, University of California, Santa Barbara8, University of Maryland, College Park9, University of Lyon10, Claude Bernard University Lyon 111, Northwestern University12, University of Victoria13, University of Manchester14, University of Bonn15, Technische Universität München16, École Polytechnique Fédérale de Lausanne17, Stony Brook University18, Autonomous University of Madrid19, Centre national de la recherche scientifique20, University of Paris21, Moscow Institute of Physics and Technology22, Autonomous University of Barcelona23, University of Copenhagen24, Université libre de Bruxelles25, University of La Serena26, University of Valencia27, Taras Shevchenko National University of Kyiv28, Heidelberg University29, Yonsei University30, Princeton University31, University of Geneva32, Harvard University33, Tomsk State University34, Tomsk Polytechnic University35, University of Tübingen36, University of Washington37, University of Florida38, University of Hamburg39, TRIUMF40, University of Iowa41, University of Grenoble42, International Centre for Theoretical Physics43, Hokkai Gakuen University44, University of Illinois at Urbana–Champaign45, Durham University46, University of Melbourne47, University of Naples Federico II48, York University49, University of California, Berkeley50, Lawrence Berkeley National Laboratory51
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Abstract: This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau \to 3\mu $ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals—scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

842 citations