scispace - formally typeset
Search or ask a question
Author

Karan S. Surana

Other affiliations: University of Wisconsin-Madison
Bio: Karan S. Surana is an academic researcher from University of Kansas. The author has contributed to research in topics: Finite element method & Shell (structure). The author has an hindex of 25, co-authored 141 publications receiving 2253 citations. Previous affiliations of Karan S. Surana include University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a geometrically nonlinear formulation using total lagrangian approach for the three-dimensional curved shell elements is presented, which can be made specific by selecting proper nonlinear functions representing the effects of nodal rotations.
Abstract: This paper presents a geometrically nonlinear formulation using total lagrangian approach for the three-dimensional curved shell elements. The basic element geometry is constructed using the coordinates of the middle surface nodes and the mid-surface nodal point normals. The element displacement field is described using three translations of the mid-surface nodes and the two rotations about the local axes. The existing shell element formulations are restricted to small nodal rotations between two successive load increments. The element formulation presented here removes such restrictions. This is accomplished by retaining nonlinear nodal rotation terms in the definition of the displacement field and the consistent derivation of the element properties. The formulation presented here is very general and yet can be made specific by selecting proper nonlinear functions representing the effects of nodal rotations. The element properties are derived and presented in detail. Numerical examples are also presented to demonstrate the behaviour and the accuracy of the elements.

139 citations

Journal ArticleDOI
TL;DR: In this article, a p-version least square finite element formulation (LSFEF) was proposed for non-Newtonian fluid flow under isothermal and non-isothermal conditions.
Abstract: This paper presents a p- version least squares finite element formulation (LSFEF) for two-dimensional, incompressible, non-Newtonian fluid flow under isothermal and non-isothermal conditions. The dimensionless forms of the diffential equations describing the fluid motion and heat transfer are cast into a set of first-order differential equations using non-Newtonian stresses and heat fluxes as auxiliary variables. The velocities, pressure and temperature as well as the stresses and heat fluxes are interpolated using equal-order, C0-continuous, p-version hierarchical approximation functions. The application of least squares minimization to the set of coupled first-order non-linear partial differential equations results in finding a solution vector {δ} which makes the partial derivatives of the error functional with respect to {δ} a null vector. This is accomplished by using Newton's method with a line search. The paper presents the implementation of a power-law model for the non-Newtonian Viscosity. For the non-isothermal case the fluid properties are considered to be a function of temperature. Three numerical examples (fully developed flow between parallel plates, symmetric sudden expansion and lid-driven cavity) are presented for isothermal power-law fluid flow. The Couette shear flow problem and the 4:1 symmetric sudden expansion are used to present numerical results for non-isothermal power-law fluid flow. The numerical examples demonstrate the convergence characteristics and accuracy of the formulation.

108 citations

Journal ArticleDOI
TL;DR: In this article, isoparametric formulation for the three-dimensional transition finite elements is presented, which are necessary for applications requiring the use of 3D solid elements and the curved shell elements.
Abstract: This paper presents isoparametric formulation for the three-dimensional transition finite elements. The transition finite elements are necessary for applications requiring the use of three-dimensional isoparametric solid elements and the curved shell elements. These elements provide proper connections between the two portions of the structure modelled with three-dimensional solids and the curved shell elements. The element properties are derived and presented in detail. Numerical examples are also presented to demonstrate the accuracy and the applications of such elements in three-dimensional stress analysis.

100 citations

Journal ArticleDOI
TL;DR: In this article, a space-time coupled least-squares minimization (SLES) algorithm was proposed for the problem of finite element approximations to the advection-diffusion and Burgers equations.
Abstract: This paper presents a p-version least-squares finite element formulation for unsteady fluid dynamics problems where the effects of space and time are coupled. The dimensionless form of the differential equations describing the problem are first cast into a set of first-order differential equations by introducing auxiliary variables. This permits the use of C° element approximation. The element properties are derived by utilizing p-version approximation functions in both space and time and then minimizing the error functional given by the space–time integral of the sum of squares of the errors resulting from the set of first-order differential equations. This results in a true space–time coupled least-squares minimization procedure. A time marching procedure is developed in which the solution for the current time step provides the initial conditions for the next time step. The space–time coupled p-version approximation functions provide the ability to control truncation error which, in turn, permits very large time steps. What literally requires hundreds of time steps in uncoupled conventional time marching procedures can be accomplished in a single time step using the present space–time coupled approach. For non-linear problems the non-linear algebraic equations resulting from the least-squares process are solved using Newton's method with a line search. This procedure results in a symmetric Hessian matrix. Equilibrium iterations are carried out for each time step until the error functional and each component of the gradient of the error functional with respect to nodal degrees of freedom are below a certain prespecified tolerance. The generality, success and superiority of the present formulation procedure is demonstrated by presenting specific formulations and examples for the advection–diffusion and Burgers equations. The results are compared with the analytical solutions and those reported in the literature. The formulation presented here is ideally suited for space–time adaptive procedures. The element error functional values provide a mechanism for adaptive h, p or hp refinements. The work presented in this paper provides the basis for the extension of the space–time coupled least-squares minimization concept to two- and three-dimensional unsteady fluid flow.

68 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional curved beam element formulation with higher-order transverse shear deformation for linear static analysis of laminated composites is presented, where the displacement approximation in the transverse direction can be of arbitrary desired polynomial order p, thereby permitting strains of at least order (p − 1).

64 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

BookDOI
17 Aug 2012
TL;DR: De Borst et al. as mentioned in this paper present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,568 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: In this article, an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures is presented. But, although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations.
Abstract: This work is an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures. Although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations. Most of the theories and finite elements that have been proposed over the last thirty years are in fact based on these types of approaches. The paper has been divided into three parts. Part I, has been devoted to the description of possible approaches to plate and shell structures: 3D approaches, continuum based methods, axiomatic and asymptotic two-dimensional theories, classical and mixed formulations, equivalent single layer and layer wise variable descriptions are considered (the number of the unknown variables is considered to be independent of the number of the constitutive layers in the equivalent single layer case). Complicating effects that have been introduced by anisotropic behavior and layered constructions, such as high transverse deformability, zig-zag effects and interlaminar continuity, have been discussed and summarized by the acronimC -Requirements. Two-dimensional theories have been dealt with in Part II. Contributions based on axiomatic, asymtotic and continuum based approaches have been overviewed. Classical theories and their refinements are first considered. Both case of equivalent single-layer and layer-wise variables descriptions are discussed. The so-called zig-zag theories are then discussed. A complete and detailed overview has been conducted for this type of theory which relies on an approach that is entirely originated and devoted to layered constructions. Formulas and contributions related to the three possible zig-zag approaches, i.e. Lekhnitskii-Ren, Ambartsumian-Whitney-Rath-Das, Reissner-Murakami-Carrera ones have been presented and overviewed, taking into account the findings of a recent historical note provided by the author. Finite Element FE implementations are examined in Part III. The possible developments of finite elements for layered plates and shells are first outlined. FEs based on the theories considered in Part II are discussed along with those approaches which consist of a specific application of finite element techniques, such as hybrid methods and so-called global/local techniques. The extension of finite elements that were originally developed for isotropic one layered structures to multilayerd plates and shells are first discussed. Works based on classical and refined theories as well as on equivalent single layer and layer-wise descriptions have been overviewed. Development of available zig-zag finite elements has been considered for the three cases of zig-zag theories. Finite elements based on other approches are also discussed. Among these, FEs based on asymtotic theories, degenerate continuum approaches, stress resultant methods, asymtotic methods, hierarchy-p,_-s global/local techniques as well as mixed and hybrid formulations have been overviewed.

839 citations

Book ChapterDOI
01 Jan 2022

818 citations