scispace - formally typeset
Search or ask a question
Author

Karel Kersters

Bio: Karel Kersters is an academic researcher from Ghent University. The author has contributed to research in topics: Amplified fragment length polymorphism & Aeromonas. The author has an hindex of 63, co-authored 130 publications receiving 16165 citations.


Papers
More filters
Journal ArticleDOI
Peter Vandamme1, Bruno Pot1, Monique Gillis1, P. De Vos1, Karel Kersters1, Jean Swings1 
TL;DR: In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae.

1,651 citations

Journal ArticleDOI
TL;DR: A comprehensive DNA-DNA hybridization study was performed by using 183 strains of the genus Xanthomonas, showing this genus was shown to comprise 20 DNA homology groups which are considered genomic species.
Abstract: A comprehensive DNA-DNA hybridization study was performed by using 183 strains of the genus Xanthomonas. This genus was shown to comprise 20 DNA homology groups which are considered genomic species. Four groups corresponded to the previously described species Xanthomonas albilineans, Xanthomonas fragariae, Xanthomonas oryzae, and Xanthomonas populi. The previously described species Xanthomonas campestris was heterogeneous and was divided into 16 DNA homology groups. One of these groups exhibited a high level of DNA homology with Xanthomonas axonopodis. The 62 pathovars represented in this study were allocated to appropriate species. Our results, together with previous taxonomic data, supported a comprehensive revision of the classification of the genus Xanthomonas. The species X. albilineans, X. fragariae, X. oryzae, and X. populi are not affected. The type species of the genus, X. campestris (Pammel 1895) Dowson 1939, is emended to include only the pathovars obtained from crucifers (i.e., X. campestris pv. aberrans, X. campestris pv. armoraciae, X. campestris pv. barbareae, X. campestris pv. campestris, X. campestris pv. incanae, and X. campestris pv. raphani). X. axonopodis Starr and Garces 1950 is emended to include 34 former X. campestris pathovars. The following species names are proposed: Xanthomonas arboricola sp. nov., including X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. poinsettiicola (type C strains of the former X. campestris pathovar), X. arboricola pv. populi, and X. arboricola pv. pruni; Xanthomonas bromi sp. nov. for strains isolated from bromegrass; Xanthomonas cassavae (ex Wiehe and Dowson 1953) sp. nov., nom. rev.; Xanthomonas codiaei sp. nov., including type B strains of the former taxon X. campestris pv. poinsettiicola; Xanthomonas cucurbitae (ex Bryan 1926) sp. nov., nom. rev.; Xanthomonas hortorum sp. nov., including X. hortorum pv. hederae, X. hortorum pv. pelargonii, and X. hortorum pv. vitians; Xanthomonas hyacinthi (ex Wakker 1883) sp. nov., nom. rev.; Xanthomonas melonis sp. nov.; Xanthomonas pisi (ex Goto and Okabe 1958) sp. nov., nom. rev.; Xanthomonas sacchari sp. nov. for strains isolated from diseased sugarcane in Guadeloupe; Xanthomonas theicola sp. nov.; Xanthomonas translucens (ex Jones, Johnson, and Reddy 1917) sp. nov., nom. rev., including X. translucens pv. arrhenatheri, X. translucens pv. cerealis, X. translucens pv. graminis, X. translucens pv. hordei, X. translucens pv. phlei, X. translucens pv. phleipratensis, X. translucens pv. poae, X. translucens pv. secalis, X. translucens pv. translucens, and X. translucens pv. undulosa; Xanthomonas vasicola sp. nov., including X. vasicola pv. holcicola and X. vasicola pv. vasculorum (type B strains of the former taxon X. campestris pv. vasculorum); and Xanthomonas vesicatoria (ex Doidge 1920) sp. nov., nom. rev., which includes the type B strains of the former taxon X. campestris pv. vesicatoria. Differentiating characteristics were determined for the new species on the basis of metabolic activity on a range of carbon substrates by using the Biolog GN microplate system.

904 citations

Journal ArticleDOI
TL;DR: The phylogenetic positions and G+C contents of most species belonging to the genera Flavobacterium, Cytophaga, and Flexibacter and several related taxa were determined and new combinations for 7 of the 10 validly described species included in this genus are proposed.
Abstract: The phylogenetic positions and G+C contents of most species belonging to the genera Flavobacterium, Cytophaga, and Flexibacter and several related taxa were determined. Most of the strains included in this study belong to rRNA superfamily V, as shown by DNA-rRNA hybridization data, but the three main genera are highly polyphyletic. Several so-called Cytophaga and Flexibacter species isolated from soil and freshwater cluster with the type species of the genus Flavobacterium, Flavobacterium aquatile, and with Flavobacterium branchiophilum. The fatty acid and protein profiles of members of this group of organisms were determined. We provide an emended description of the genus Flavobacterium and propose new combinations for the following 7 of the 10 validly described species included in this genus: Flavobacterium columnare, Flavobacterium flevense, Flavobacterium johnsoniae (we also correct the specific epithet of this taxon), Flavobacterium pectinovarum, Flavobacterium psychrophilum, Flavobacterium saccharophilum, and Flavobacterium succinicans. A new name, Flavobacterium hydatis, is proposed for [Cytophaga] aquatilis Strohl and Tait 1978. The emended genus Flavobacterium contains bacteria that have the following main characteristics: gram-negative rods that are motile by gliding, produce yellow colonies on agar, are chemoorganotrophs and aerobes, decompose several polysaccharides but not cellulose, and are widely distributed in soil and freshwater habitats. Three Flavobacterium species are pathogenic for fish. The G+C contents of Flavobacterium DNAs range from 32 to 37 mol%. An emended description of the family Flavobacteriaceae is also provided.

838 citations

Journal ArticleDOI
TL;DR: Comparison of the newly obtained data with results previously obtained by well-established genotypic and chemotaxonomic methods shows the superior discriminative power of AFLP towards the differentiation of highly related bacterial strains that belong to the same species or even biovar (i.e. to characterize strains at the infrasubspecific level).
Abstract: We investigated the usefulness of a novel DNA fingerprinting technique, AFLP, which is based on the selective amplification of genomic restriction fragments by PCR, to differentiate bacterial strains at the subgeneric level. In total, 147 bacterial strains were subjected to AFLP fingerprinting: 36 Xanthomonas strains, including 23 pathovars of Xanthomonas axonopodis and six pathovars of Xanthomonas vasicola, one strain of Stenotrophomonas, 90 genotypically characterized strains comprising all 14 hybridization groups currently described in the genus Aeromonas, and four strains of each of the genera Clostridium, Bacillus, Acinetobacter, Pseudomonas and Vibrio. Depending on the genus, total genomic DNA of each bacterium was digested with a particular combination of two restriction endonucleases and the resulting fragments were ligated to restriction halfsite-specific adaptors. These adaptors served as primer-binding sites allowing the fragments to be amplified by selective PCR primers that extend beyond the adaptor and restriction site sequences. Following electrophoretic separation on 5% (w/v) polyacrylamide/8.3 M urea, amplified products could be visualized by autoradiography because one of the selective primers was radioactively labelled. The resulting banding patterns, containing approximately 30-50 visualized PCR products in the size range 80-550 bp, were captured by a high-resolution densitoscanner and further processed for computer-assisted analysis to determine band-based similarity coefficients. This study reveals extensive evidence for the applicability of AFLP in bacterial taxonomy through comparison of the newly obtained data with results previously obtained by well-established genotypic and chemotaxonomic methods such as DNA-DNA hybridization and cellular fatty acid analysis. In addition, this study clearly demonstrates the superior discriminative power of AFLP towards the differentiation of highly related bacterial strains that belong to the same species or even biovar (i.e. to characterize strains at the infrasubspecific level), highlighting the potential of this novel fingerprinting method in epidemiological and evolutionary studies.

561 citations

Journal ArticleDOI
TL;DR: An integrated genotypic and phenotypic analysis of 128 strains of the genera Burkholderia, Ralstonia, and Pseudomonas shows that presumed B. cepacia strains isolated from cystic fibrosis patients belong to at least five distinct genomic species, one of which was identified as Burk holderia vietnamiensis.
Abstract: We performed an integrated genotypic and phenotypic analysis of 128 strains of the genera Burkholderia, Ralstonia, and Pseudomonas in order to study the taxonomic structure of Burkholderia cepacia and its relationships with other Burkholderia species. Our data show that presumed B. cepacia strains isolated from cystic fibrosis patients belong to at least five distinct genomic species, one of which was identified as Burkholderia vietnamiensis. This group of five phenotypically similar species is referred to as the B. cepacia complex. The name Burkholderia multivorans is proposed for one of these genomic species, which was formerly referred to as B. cepacia genomovar II; the remaining B. cepacia groups are referred to as genomovars I, III, and IV, pending additional differential phenotypic tests. The role and pathogenic potential of each of these taxa, particularly in view of the potentially fatal infections in cystic fibrosis patients, need further evaluation. The data presented also demonstrate that Pseudomonas glathei and Pseudomonas pyrrocinia should be reclassified as Burkholderia species.

519 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty, so it is crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes.
Abstract: For the last 25 years species delimitation in prokaryotes (Archaea and Bacteria) was to a large extent based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing time has come to directly use the now available and easy to generate genome sequences for delimitation of species. GBDP (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the Prokaryotic species concept. Correlation and regression analyses were used to determine the best-performing methods and the most influential parameters. GBDP was further enriched with a set of new features such as confidence intervals for intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional family of distance functions. As in previous analyses, GBDP obtained the highest agreement with wet-lab DDH among all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling showed marked differences between the underlying distance functions. Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological advancements, easily accessible through the web service at http://ggdc.dsmz.de , are crucial steps towards a consistent and truly genome sequence-based classification of microorganisms.

4,411 citations

Journal ArticleDOI
TL;DR: It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available and reveal extensive gene diversity within the current concept of "species".
Abstract: DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species. Since the extent of hybridization between a pair of strains is ultimately governed by their respective genomic sequences, we examined the quantitative relationship between DDH values and genome sequence-derived parameters, such as the average nucleotide identity (ANI) of common genes and the percentage of conserved DNA. A total of 124 DDH values were determined for 28 strains for which genome sequences were available. The strains belong to six important and diverse groups of bacteria for which the intra-group 16S rRNA gene sequence identity was greater than 94 %. The results revealed a close relationship between DDH values and ANI and between DNA-DNA hybridization and the percentage of conserved DNA for each pair of strains. The recommended cut-off point of 70 % DDH for species delineation corresponded to 95 % ANI and 69 % conserved DNA. When the analysis was restricted to the protein-coding portion of the genome, 70 % DDH corresponded to 85 % conserved genes for a pair of strains. These results reveal extensive gene diversity within the current concept of "species". Examination of reciprocal values indicated that the level of experimental error associated with the DDH method is too high to reveal the subtle differences in genome size among the strains sampled. It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available.

3,471 citations

Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations

Reference BookDOI
11 Feb 1999
TL;DR: The state of knowledge regarding the principal considerations in the design of programmes and studies for monitoring water resources and supplies and describes the approaches and procedures used as mentioned in this paper, and the information needed for protecting drinking water sources and recreational water bodies from the health hazards caused by cyanobacteria and their toxins.
Abstract: This book describes the present state of knowledge regarding the impact of cyanobacteria on health through the use of water. It considers aspects of risk management and details the information needed for protecting drinking water sources and recreational water bodies from the health hazards caused by cyanobacteria and their toxins. It also outlines the state of knowledge regarding the principal considerations in the design of programmes and studies for monitoring water resources and supplies and describes the approaches and procedures used. The development of this publication was guided by the recommendations of several expert meetings concerning drinking water (Geneva, December 1995; Bad Elster, June 1996) and recreational water (Bad Elster, June 1996; St Helier, May 1997). An expert meeting in Bad Elster, April 1997, critically reviewed the literature concerning the toxicity of cyanotoxins and developed the scope and content of this book. A draft manuscript was reviewed at an editorial meeting in November 1997, and a further draft was reviewed by the working group responsible for updating the Guidelines for Drinkingwater Quality in March 1998.

3,131 citations

Journal ArticleDOI
TL;DR: This review details the significant advances that have been made in understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations.
Abstract: Acinetobacter baumannii has emerged as a highly troublesome pathogen for many institutions globally. As a consequence of its immense ability to acquire or upregulate antibiotic drug resistance determinants, it has justifiably been propelled to the forefront of scientific attention. Apart from its predilection for the seriously ill within intensive care units, A. baumannii has more recently caused a range of infectious syndromes in military personnel injured in the Iraq and Afghanistan conflicts. This review details the significant advances that have been made in our understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations.

2,915 citations