scispace - formally typeset
Search or ask a question
Author

Karen Egiazarian

Other affiliations: Nokia, Roma Tre University, Bulgarian Academy of Sciences  ...read more
Bio: Karen Egiazarian is an academic researcher from Tampere University of Technology. The author has contributed to research in topics: Image processing & Filter (signal processing). The author has an hindex of 53, co-authored 585 publications receiving 22477 citations. Previous affiliations of Karen Egiazarian include Nokia & Roma Tre University.


Papers
More filters
Journal ArticleDOI
TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Abstract: We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g., blocks) into 3D data arrays which we call "groups." Collaborative Altering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

7,912 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper reviews the first challenge on single image super-resolution (restoration of rich details in an low resolution image) with focus on proposed solutions and results and gauges the state-of-the-art in single imagesuper-resolution.
Abstract: This paper reviews the first challenge on single image super-resolution (restoration of rich details in an low resolution image) with focus on proposed solutions and results. A new DIVerse 2K resolution image dataset (DIV2K) was employed. The challenge had 6 competitions divided into 2 tracks with 3 magnification factors each. Track 1 employed the standard bicubic downscaling setup, while Track 2 had unknown downscaling operators (blur kernel and decimation) but learnable through low and high res train images. Each competition had ∽100 registered participants and 20 teams competed in the final testing phase. They gauge the state-of-the-art in single image super-resolution.

1,243 citations

Journal ArticleDOI
TL;DR: This paper describes a recently created image database, TID2013, intended for evaluation of full-reference visual quality assessment metrics, and methodology for determining drawbacks of existing visual quality metrics is described.
Abstract: This paper describes a recently created image database, TID2013, intended for evaluation of full-reference visual quality assessment metrics. With respect to TID2008, the new database contains a larger number (3000) of test images obtained from 25 reference images, 24 types of distortions for each reference image, and 5 levels for each type of distortion. Motivations for introducing 7 new types of distortions and one additional level of distortions are given; examples of distorted images are presented. Mean opinion scores (MOS) for the new database have been collected by performing 985 subjective experiments with volunteers (observers) from five countries (Finland, France, Italy, Ukraine, and USA). The availability of MOS allows the use of the designed database as a fundamental tool for assessing the effectiveness of visual quality. Furthermore, existing visual quality metrics have been tested with the proposed database and the collected results have been analyzed using rank order correlation coefficients between MOS and considered metrics. These correlation indices have been obtained both considering the full set of distorted images and specific image subsets, for highlighting advantages and drawbacks of existing, state of the art, quality metrics. Approaches to thorough performance analysis for a given metric are presented to detect practical situations or distortion types for which this metric is not adequate enough to human perception. The created image database and the collected MOS values are freely available for downloading and utilization for scientific purposes. We have created a new large database.This database contains larger number of distorted images and distortion types.MOS values for all images are obtained and provided.Analysis of correlation between MOS and a wide set of existing metrics is carried out.Methodology for determining drawbacks of existing visual quality metrics is described.

943 citations

Journal ArticleDOI
TL;DR: A signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data.
Abstract: We present a simple and usable noise model for the raw-data of digital imaging sensors This signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data We further explicitly take into account the clipping of the data (over- and under-exposure), faithfully reproducing the nonlinear response of the sensor We propose an algorithm for the fully automatic estimation of the model parameters given a single noisy image Experiments with synthetic images and with real raw-data from various sensors prove the practical applicability of the method and the accuracy of the proposed model

789 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the state-of-the-art denoising performance of BM4D, and its effectiveness when exploited as a regularizer in volumetric data reconstruction.
Abstract: We present an extension of the BM3D filter to volumetric data. The proposed algorithm, BM4D, implements the grouping and collaborative filtering paradigm, where mutually similar d -dimensional patches are stacked together in a (d+1) -dimensional array and jointly filtered in transform domain. While in BM3D the basic data patches are blocks of pixels, in BM4D we utilize cubes of voxels, which are stacked into a 4-D “group.” The 4-D transform applied on the group simultaneously exploits the local correlation present among voxels in each cube and the nonlocal correlation between the corresponding voxels of different cubes. Thus, the spectrum of the group is highly sparse, leading to very effective separation of signal and noise through coefficient shrinkage. After inverse transformation, we obtain estimates of each grouped cube, which are then adaptively aggregated at their original locations. We evaluate the algorithm on denoising of volumetric data corrupted by Gaussian and Rician noise, as well as on reconstruction of volumetric phantom data with non-zero phase from noisy and incomplete Fourier-domain (k-space) measurements. Experimental results demonstrate the state-of-the-art denoising performance of BM4D, and its effectiveness when exploited as a regularizer in volumetric data reconstruction.

748 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
01 Jan 2009

8,216 citations