scispace - formally typeset
Search or ask a question
Author

Karen K. Gleason

Bio: Karen K. Gleason is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Chemical vapor deposition & Thin film. The author has an hindex of 72, co-authored 491 publications receiving 20558 citations. Previous affiliations of Karen K. Gleason include University of California, Berkeley & Colorado State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the creation of a stable, superhydrophobic surface using the nanoscale roughness inherent in a vertically aligned carbon nanotube forest together with a thin conformal hydrophobic poly(tetrafluoroethylene) (PTFE) coating on the surface of the nanotubes was demonstrated.
Abstract: The present study demonstrates the creation of a stable, superhydrophobic surface using the nanoscale roughness inherent in a vertically aligned carbon nanotube forest together with a thin, conformal hydrophobic poly(tetrafluoroethylene) (PTFE) coating on the surface of the nanotubes. Superhydrophobicity is achieved down to the microscopic level where essentially spherical, micrometer-sized water droplets can be suspended on top of the nanotube forest.

1,568 citations

PatentDOI
TL;DR: In this paper, a versatile method to produce superhydrophobic surfaces by combining electrospinning and initiated chemical vapor deposition (iCVD) is described, and a wide variety of surfaces including electrospun polyester fibers, may be coated by the inventive method.
Abstract: Disclosed is a versatile method to produce superhydrophobic surfaces by combining electrospinning and initiated chemical vapor deposition (iCVD). A wide variety of surfaces, including electrospun polyester fibers, may be coated by the inventive method. In one embodiment, poly(caprolactone) (PCL) was electrospun and then coated by iCVD with a thin layer of hydrophobic polymerized perfluoroalkyl ethyl methacrylate (PPFEMA). In certain embodiments said coated surfaces exhibit water contact angles of above 150 degrees, oleophobicities of at least Grade-8 and sliding angles of less than 12 degrees (for a water droplet of about 20 mg).

641 citations

Journal ArticleDOI
TL;DR: CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents.
Abstract: Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques. Commonality with inorganic CVD methods facilitates the fabrication of hybrid devices. CVD polymers bridge microfabrication technology with chemical, biological, and nanoparticle systems and assembly. Robust interfaces can be achieved through covalent grafting enabling high-resolution (60 nm) patterning, even on flexible substrates. Utilizing only low-energy input to drive selective chemistry, modest vacuum, and room-temperature substrates, CVD polymerization is compatible with thermally sensitive substrates, such as paper, textiles, and plastics. CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents. Quantitative models aid the development of large-area and roll-to-roll CVD polymer reactors. Relevant background, fundamental principles, and selected applications are reviewed.

352 citations

Journal ArticleDOI
TL;DR: Initiated chemical vapor deposition (iCVD) and oCVD as discussed by the authors enable the fabrication of chemically well-defined thin polymeric films on complex objects with micro-and nano-scale features.
Abstract: The techniques of initiated chemical vapor deposition (iCVD) and oxidative chemical vapor deposition (oCVD) enable the fabrication of chemically well-defined thin polymeric films on complex objects with micro- and nano-scale features. By depositing polymers from the vapor phase, many wetting and solution effects are avoided, and conformal films can be created. In iCVD, a variant of hot filament CVD, the deposition rate is enhanced and chemical functionalities of the polymers' constituents are maintained by including a thermally labile initiator in the feed stream. Due to the low energy required when using an initiator, delicate substrates can be coated. In oCVD, infusible, electrically conductive films are formed directly on the substrate of interest as the oxidant and monomer are introduced into the reactor simultaneously. This Feature Article provides an overview of the work that has been done to develop iCVD and oCVD into platform technologies. Relevant background, fundamentals, and applications will be discussed.

297 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations

Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is shown how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.
Abstract: Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces-those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water-are extremely rare. Calculations suggest that creating such a surface would require a surface energy lower than that of any known material. We show how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.

2,657 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: Flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane are demonstrated.
Abstract: The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.

2,627 citations

Journal ArticleDOI
TL;DR: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS).
Abstract: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The methods and applications described focus on the exploitation of the physical and chemical properties of PDMS in the fabrication or actuation of the devices. Fabrication of channels in PDMS is simple, and it can be used to incorporate other materials and structures through encapsulation or sealing (both reversible and irreversible).

2,490 citations