Author
Karen Scrivener
Other affiliations: Southeast University, École Polytechnique, Lafarge ...read more
Bio: Karen Scrivener is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Cement & Portland cement. The author has an hindex of 80, co-authored 320 publications receiving 24971 citations. Previous affiliations of Karen Scrivener include Southeast University & École Polytechnique.
Topics: Cement, Portland cement, Cementitious, Clinker (cement), Metakaolin
Papers published on a yearly basis
Papers
More filters
TL;DR: The use of silica-rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials.
Abstract: The use of silica rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials. At the levels of substitution normally used, major changes are the lower Ca/Si ratio in the C–S–H phase and consumption of portlandite. Alumina-rich SCMs increase the Al-uptake in C–S–H and the amounts of aluminate containing hydrates. In general the changes in phase assemblages are well captured by thermodynamic modelling, although better knowledge of the C–S–H is needed. At early ages, “filler” effects lead to an increased reaction of the clinker phases. Reaction of SCMs starts later and is enhanced with pH and temperature. Composition, fineness and the amount of glassy phase play also an important role. Due to the diverse range of SCM used, generic relations between composition, particle size, exposure conditions as temperature or relative humidity become increasingly crucial.
1,920 citations
TL;DR: The current state of knowledge of cement hydration mechanisms is reviewed, including the origin of the period of slow reaction in alite and cement, the nature of the acceleration period, the role of calcium sulfate in modifying the reaction rate of tricalcium aluminate, the interactions of silicates and aluminates, and the kinetics of the deceleration period as mentioned in this paper.
Abstract: The current state of knowledge of cement hydration mechanisms is reviewed, including the origin of the period of slow reaction in alite and cement, the nature of the acceleration period, the role of calcium sulfate in modifying the reaction rate of tricalcium aluminate, the interactions of silicates and aluminates, and the kinetics of the deceleration period. In addition, several remaining controversies or gaps in understanding are identified, such as the nature and influence on kinetics of an early surface hydrate, the mechanistic origin of the beginning of the acceleration period, the manner in which microscopic growth processes lead to the characteristic morphologies of hydration products at larger length scales, and the role played by diffusion in the deceleration period. The review concludes with some perspectives on research needs for the future.
1,437 citations
TL;DR: The main conclusions of an analysis of low-CO2, eco-efficient cement-based materials, carried out by a multi-stakeholder working group initiated by the United Nations Environment Program Sustainable Building and Climate Initiative (UNEP-SBCI) are presented, based on the white papers published in this special issue as discussed by the authors.
Abstract: The main conclusions of an analysis of low-CO2, eco-efficient cement-based materials, carried out by a multi-stakeholder working group initiated by the United Nations Environment Program Sustainable Building and Climate Initiative (UNEP-SBCI) are presented, based on the white papers published in this special issue. We believe that Portland-based cement approaches will dominate in the near future due to economies of scale, levels of process optimisation, availability of raw materials and market confidence. Two product-based approaches can deliver substantial additional reductions in their global CO2 emissions, reducing the need for costly investment in carbon capture and storage (CCS) over the next 20–30 years: 1. Increased use of low-CO2 supplements (SCMs) as partial replacements for Portland cement clinker. 2. More efficient use of Portland cement clinker in mortars and concretes. However, other emerging technologies could also play an important role in emissions mitigation in the longer term, and thus merit further investigation.
1,268 citations
TL;DR: In this paper, the influence of the presence of limestone on the hydration of Portland cement was investigated, and it was shown that the stabilisation of monocarbonate in the absence of limestone indirectly stabilised ettringite, leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity.
Abstract: The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the "limestone-free" cement, which contained less than 0.3% CO2, and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration.
1,089 citations
TL;DR: In this article, the authors describe the so called interfacial transition zone (ITZ) in concrete as the region of the cement paste around the aggregate particles, which is perturbed by the presence of the aggregate, and show that the higher porosity present initially is significantly diminished by the migration of ions during hydration.
Abstract: This paper describes the so called interfacial transition zone—ITZ—in concrete. This is the region of the cement paste around the aggregate particles, which is perturbed by the presence of the aggregate. Its origin lies in the packing of the cement grains against the much larger aggregate, which leads to a local increase in porosity and predominance of smaller cement particles in this region. The ITZ is region of gradual transition and is highly heterogeneous, nevertheless the average microstructural features may be measured by analysis of a large numbers of backscattered electron images of polished concrete samples. Such measurements show that the higher porosity present initially is significantly diminished by the migration of ions during hydration.
945 citations
Cited by
More filters
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.
Abstract: Due to environment and sustainability issues, this century has witnessed remarkable achievements in green technology in the field of materials science through the development of biocomposites. The development of high-performance materials made from natural resources is increasing worldwide. The greatest challenge in working with natural fiber reinforced plastic composites is their large variation in properties and characteristics. A biocomposite's properties are influenced by a number of variables, including the fiber type, environmental conditions (where the plant fibers are sourced), processing methods, and any modification of the fiber. It is also known that recently there has been a surge of interest in the industrial applications of composites containing biofibers reinforced with biopolymers. Biopolymers have seen a tremendous increase in use as a matrix for biofiber reinforced composites. A comprehensive review of literature (from 2000 to 2010) on the mostly readily utilized natural fibers and biopolymers is presented in this paper. The overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, will be reviewed. Moreover, the modification methods; physical (corona and plasma treatment) and chemical (silane, alkaline, acetylation, maleated coupling, and enzyme treatment) will be discussed. The most popular matrices in biofiber reinforced composites based on petrochemical and renewable resources will also be addressed. The wide variety of biocomposite processing techniques as well as the factors (moisture content, fiber type and content, coupling agents and their influence on composites properties) affecting these processes will be discussed. Prior to the processing of biocomposites, semi-finished product manufacturing is also vital, which will be illustrated. Processing technologies for biofiber reinforced composites will be discussed based on thermoplastic matrices (compression molding, extrusion, injection molding, LFT-D-method, and thermoforming), and thermosets (resin transfer molding, sheet molding compound). Other implemented processes, i.e., thermoset compression molding and pultrusion and their influence on mechanical performance (tensile, flexural and impact properties) will also be evaluated. Finally, the review will conclude with recent developments and future trends of biocomposites as well as key issues that need to be addressed and resolved.
3,074 citations
TL;DR: In this article, a new analysis tool was developed to quantify the experimentally observed changes in morphology of portlandite, allowing the calculation of the relative surface energies of the crystal facets.
Abstract: Experimental work has been done to determine changes in the particle shape of portlandite grown in the presence of different ions. To quantify the experimentally observed changes in morphology a new analysis tool was developed, allowing the calculation of the relative surface energies of the crystal facets. The observed morphology in the presence of chlorides and nitrates was facetted particles of a similar shape, the addition of sulfates leads to hexagonal platelet morphology and the addition of silicates leads to the formation of large irregular aggregates. In addition to the experimental work, the surfaces of portlandite were studied with atomistic simulation techniques. The empirical force field used has first been validated. The equilibrium morphology of portlandite in vacuum and in water was then calculated. The results indicate that the presence of water stabilizes the [20.3] surface and changes the morphology. This is consistent with the experimental observation of [20.3] surfaces.
2,498 citations
TL;DR: The use of silica-rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials.
Abstract: The use of silica rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials. At the levels of substitution normally used, major changes are the lower Ca/Si ratio in the C–S–H phase and consumption of portlandite. Alumina-rich SCMs increase the Al-uptake in C–S–H and the amounts of aluminate containing hydrates. In general the changes in phase assemblages are well captured by thermodynamic modelling, although better knowledge of the C–S–H is needed. At early ages, “filler” effects lead to an increased reaction of the clinker phases. Reaction of SCMs starts later and is enhanced with pH and temperature. Composition, fineness and the amount of glassy phase play also an important role. Due to the diverse range of SCM used, generic relations between composition, particle size, exposure conditions as temperature or relative humidity become increasingly crucial.
1,920 citations
01 Jan 2016
TL;DR: The properties of concrete is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading properties of concrete. As you may know, people have look hundreds times for their chosen readings like this properties of concrete, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some malicious virus inside their computer. properties of concrete is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the properties of concrete is universally compatible with any devices to read.
1,701 citations
TL;DR: The current state of knowledge of cement hydration mechanisms is reviewed, including the origin of the period of slow reaction in alite and cement, the nature of the acceleration period, the role of calcium sulfate in modifying the reaction rate of tricalcium aluminate, the interactions of silicates and aluminates, and the kinetics of the deceleration period as mentioned in this paper.
Abstract: The current state of knowledge of cement hydration mechanisms is reviewed, including the origin of the period of slow reaction in alite and cement, the nature of the acceleration period, the role of calcium sulfate in modifying the reaction rate of tricalcium aluminate, the interactions of silicates and aluminates, and the kinetics of the deceleration period. In addition, several remaining controversies or gaps in understanding are identified, such as the nature and influence on kinetics of an early surface hydrate, the mechanistic origin of the beginning of the acceleration period, the manner in which microscopic growth processes lead to the characteristic morphologies of hydration products at larger length scales, and the role played by diffusion in the deceleration period. The review concludes with some perspectives on research needs for the future.
1,437 citations