scispace - formally typeset
Search or ask a question

Showing papers by "Kari Alitalo published in 2015"


Journal ArticleDOI
TL;DR: The presence of a lymphatic vessel network in the dura mater of the mouse brain is discovered and it is shown that these dural lymphatic vessels are important for the clearance of macromolecules from the brain.
Abstract: The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease.

1,458 citations


Journal ArticleDOI
TL;DR: It is shown that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins.
Abstract: Rationale: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of v ...

209 citations


Journal ArticleDOI
TL;DR: These results establish Ang2-mediated β1-integrin activation as a promoter of endothelial destablization, explaining the controversial vascular functions of Ang1 and Ang2.
Abstract: Angiopoietins regulate vascular homeostasis via the endothelial Tie receptor tyrosine kinases. Angiopoietin-1 (Ang1) supports endothelial stabilization via Tie2 activation. Angiopoietin-2 (Ang2) functions as a context-dependent Tie2 agonist/antagonist promoting pathological angiogenesis, vascular permeability and inflammation. Elucidating Ang2-dependent mechanisms of vascular destablization is critical for rational design of angiopoietin antagonists that have demonstrated therapeutic efficacy in cancer trials. Here, we report that Ang2, but not Ang1, activates β1-integrin, leading to endothelial destablization. Autocrine Ang2 signalling upon Tie2 silencing, or in Ang2 transgenic mice, promotes β1-integrin-positive elongated matrix adhesions and actin stress fibres, regulating vascular endothelial-cadherin-containing cell-cell junctions. The Tie2-silenced monolayer integrity is rescued by β1-integrin, phosphoinositide-3 kinase or Rho kinase inhibition, and by re-expression of a membrane-bound Tie2 ectodomain. Furthermore, Tie2 silencing increases, whereas Ang2 blocking inhibits transendothelial tumour cell migration in vitro. These results establish Ang2-mediated β1-integrin activation as a promoter of endothelial destablization, explaining the controversial vascular functions of Ang1 and Ang2.

204 citations


Journal ArticleDOI
TL;DR: It is shown that the vascular endothelial growth factor receptor 3/p110α PI3-kinase signaling pathway is selectively required for the formation of mesenteric lymphatic vasculature, which may critically underlie organ-specific manifestation of lymphatic dysfunction in disease.

203 citations


Journal ArticleDOI
TL;DR: It is shown here that VEGF‐C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.
Abstract: Vascular endothelial growth factor C (VEGF-C) binding to its tyrosine kinase receptor VEGFR-3 drives lymphatic vessel growth during development and in pathological processes. Although the VEGF-C/VEGFR-3 pathway provides a target for treatment of cancer and lymphedema, the physiological functions of VEGF-C in adult vasculature are unknown. We show here that VEGF-C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine. Following Vegfc gene deletion in adult mice, the intestinal lymphatic vessels, including the lacteal vessels, underwent gradual atrophy, which was aggravated when also Vegfd was deleted. VEGF-C was expressed by a subset of smooth muscle cells adjacent to the lacteals in the villus and in the intestinal wall. The Vegfc-deleted mice showed defective lipid absorption and increased fecal excretion of dietary cholesterol and fatty acids. When fed a high-fat diet, the Vegfc-deficient mice were resistant to obesity and had improved glucose metabolism. Our findings indicate that the lymphangiogenic growth factors provide trophic and dynamic regulation of the intestinal lymphatic vasculature, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.

162 citations


Journal ArticleDOI
TL;DR: It is found that VEGFR2 is absolutely required for the sprouting of endothelial cells that display low Notch activity, and that even small amounts of VEGfr2 are able to sustain angiogenesis to some extent.
Abstract: Angiogenesis, the formation of new blood vessels, is regulated by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). VEGFR2 is abundant in the tip cells of angiogenic sprouts, where VEGF/VEGFR2 functions upstream of the delta-like ligand 4 (DLL4)/Notch signal transduction pathway. VEGFR3 is expressed in all endothelia and is indispensable for angiogenesis during early embryonic development. In adults, VEGFR3 is expressed in angiogenic blood vessels and some fenestrated endothelia. VEGFR3 is abundant in endothelial tip cells, where it activates Notch signaling, facilitating the conversion of tip cells to stalk cells during the stabilization of vascular branches. Subsequently, Notch activation suppresses VEGFR3 expression in a negative feedback loop. Here we used conditional deletions and a Notch pathway inhibitor to investigate the cross-talk between VEGFR2, VEGFR3, and Notch in vivo. We show that postnatal angiogenesis requires VEGFR2 signaling also in the absence of Notch or VEGFR3, and that even small amounts of VEGFR2 are able to sustain angiogenesis to some extent. We found that VEGFR2 is required independently of VEGFR3 for endothelial DLL4 up-regulation and angiogenic sprouting, and for VEGFR3 functions in angiogenesis. In contrast, VEGFR2 deletion had no effect, whereas VEGFR3 was essential for postnatal lymphangiogenesis, and even for lymphatic vessel maintenance in adult skin. Knowledge of these interactions and the signaling functions of VEGFRs in blood vessels and lymphatic vessels is essential for the therapeutic manipulation of the vascular system, especially when considering multitargeted antiangiogenic treatments.

117 citations


Journal ArticleDOI
TL;DR: In vivo models are required to understand the complex cellular interactions that enable the generation of functionally active and hierarchical blood vessel networks capable of providing an appropriate blood supply and paracrine stimuli to organs.
Abstract: Vascular dysfunction is causally contributing to many diseases, including but not limited to cardiovascular disease, which is still the leading cause of death in the Western world. The endothelium that lines the inner wall of the blood vessels plays a critical role in the pathobiology of these illnesses. Particularly after ischemia or injury, the growth of new blood vessels, driven by endothelial expansion, is essential to maintain oxygen supply to the ischemic or injured tissue. Recent studies additionally suggest that the endothelium acts as a paracrine source for signals that determine tissue regeneration versus fibrosis after injury. Excessive vascularization, however, might also be unwanted, as in the case of cancer, neovascular eye diseases including diabetic retinopathy, atheroma growth, or the expansion of vasa vasorum, which leads to adverse vessel wall remodeling. Neovascularization is a tightly regulated and essential process that results in the formation of new blood vessels. Specific types of neovascularization include angiogenesis, the formation of new capillaries from existing capillaries, and arteriogenesis, the formation of new arteries from preexisting collaterals or de novo. Although endothelial cells (ECs) certainly are essential for both processes, the formation of functionally active vessels requires a complex molecular cross-talk of ECs with perivascular cells such as pericytes, smooth muscle cells, and macrophages. Simple in vitro models are best suited to examine specific aspects of particular processes involved in angiogenesis such as the biochemical interactions that regulate EC proliferation, motility, and apoptosis or lumen formation. However, in vivo models are required to understand the complex cellular interactions that enable the generation of functionally active and hierarchical blood vessel networks capable of providing an appropriate blood supply and paracrine stimuli to organs. In addition, the development of therapeutic strategies to either promote or inhibit vessel growth depends on reproducible measures and end points in experimental …

109 citations


Journal ArticleDOI
TL;DR: Systemic antibody blockage of VEGFR-3 in db/db mice reduces adipose tissue macrophage infiltration and hepatic lipid accumulation, and improves insulin sensitivity, revealing an unanticipated role of the lymphangiogenic factors VEGF-C and -D in the mediation of metabolic syndrome-associated adipose tissues inflammation.
Abstract: Objective Elevated serum levels of the lymphangiogenic factors VEGF-C and -D have been observed in obese individuals but their relevance for the metabolic syndrome has remained unknown.

99 citations


Journal ArticleDOI
TL;DR: Drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility are uncovered, indicating that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids.
Abstract: Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility.

85 citations


Journal ArticleDOI
TL;DR: It is shown that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR) 3 and its ligand VEGF-C, which activates quiescent N SCs to enter the cell cycle and generate progenitor cells.

79 citations


Journal ArticleDOI
TL;DR: The results show that VEGF-C provides the preferred alternative for growth factor therapy of lymphedema when compared to VEGf-C156S, due to the superior lymphangiogenic response and minor blood vessel effects, and suggest that activation of both VEGFR-2 and V EGFR-3 might be needed for efficient lymphANGiogenesis.
Abstract: VEGF-C156S, a lymphangiogenesis-specific form of vascular endothelial growth factor C (VEGF-C), has been considered as a promising candidate for the experimental pro-lymphangiogenic treatment, as it lacks potential angiogenic effects. As a precursor to future clinical trials, the therapeutic efficacy and blood vascular side effects of VEGF-C and VEGF-C156S were compared in a large animal model of secondary lymphedema. Combination of lymphatic growth factor treatment and autologous lymph node transfer was used to normalize the lymphatic anatomy after surgical excision of lymphatic tissue. Lymph vessels around the inguinal lymph node of female domestic pigs were destroyed in order to impair the normal lymphatic drainage from the hind limb. Local injections of adenoviruses (Ad) encoding VEGF-C or VEGF-C156S were used to enhance the regrowth of the lymphatic vasculature. AdLacZ (β-galactosidase) and saline injections served as controls. Both VEGF-C and VEGF-C156S induced growth of new lymphatic vessels in the area of excision, although lymphangiogenesis was notably stronger after VEGF-C treatment. Also the transferred lymph nodes were best-preserved in the VEGF-C-treated pigs. Despite the enlargement of blood vessels following the VEGF-C therapy, no signs of sprouting angiogenesis or increased blood vascular permeability in the form of increased wound exudate volumes were observed. Our results show that VEGF-C provides the preferred alternative for growth factor therapy of lymphedema when compared to VEGF-C156S, due to the superior lymphangiogenic response and minor blood vessel effects. Furthermore, these observations suggest that activation of both VEGFR-2 and VEGFR-3 might be needed for efficient lymphangiogenesis.

Journal ArticleDOI
TL;DR: A novel mechanism in melanoma pathogenesis is uncovered, whereby restricted collagen infiltration and limited mesenchymal invasion are unexpectedly associated with the properties of the most aggressive tumors, revealing MMP16 as a putative indicator of adverse melanoma prognosis.
Abstract: Lymphatic invasion and accumulation of continuous collagen bundles around tumor cells are associated with poor melanoma prognosis, but the underlying mechanisms and molecular determinants have remained unclear. We show here that a copy-number gain or overexpression of the membrane-type matrix metalloproteinase MMP16 (MT3-MMP) is associated with poor clinical outcome, collagen bundle assembly around tumor cell nests, and lymphatic invasion. In cultured WM852 melanoma cells derived from human melanoma metastasis, silencing of MMP16 resulted in cell-surface accumulation of the MMP16 substrate MMP14 (MT1-MMP) as well as L1CAM cell adhesion molecule, identified here as a novel MMP16 substrate. When limiting the activities of these trans-membrane protein substrates toward pericellular collagen degradation, cell junction disassembly, and blood endothelial transmigration, MMP16 supported nodular-type growth of adhesive collagen-surrounded melanoma cell nests, coincidentally steering cell collectives into lymphatic vessels. These results uncover a novel mechanism in melanoma pathogenesis, whereby restricted collagen infiltration and limited mesenchymal invasion are unexpectedly associated with the properties of the most aggressive tumors, revealing MMP16 as a putative indicator of adverse melanoma prognosis.

Journal ArticleDOI
TL;DR: Angiopoietin-2 blockage was beneficial as it decreased fatty streak formation and plasma triglyceride levels, but had no adverse effect on pre-existing atherosclerosis in hypercholesterolemic mice.

Journal ArticleDOI
TL;DR: In this article, the functional role of different CCBE1 protein domains was analyzed in vivo and in vitro, and it was shown that deletion of the collagen domains has a much stronger effect than deletion of EGF domains.
Abstract: Rationale:Collagen- and calcium-binding EGF domain–containing protein 1 (CCBE1) is essential for lymphangiogenesis in vertebrates and has been associated with Hennekam syndrome. Recently, CCBE1 has emerged as a crucial regulator of vascular endothelial growth factor-C (VEGFC) signaling. Objective:CCBE1 is a secreted protein characterized by 2 EGF domains and 2 collagen repeats. The functional role of the different CCBE1 protein domains is completely unknown. Here, we analyzed the functional role of the different CCBE1 domains in vivo and in vitro. Methods and Results:We analyzed the functionality of several CCBE1 deletion mutants by generating knock-in mice expressing these mutants, by analyzing their ability to enhance Vegfc signaling in vivo in zebrafish, and by testing their ability to induce VEGFC processing in vitro. We found that deleting the collagen domains of CCBE1 has a much stronger effect on CCBE1 activity than deleting the EGF domains. First, although CCBE1ΔCollagen mice fully phenocopy CCBE1...

Journal ArticleDOI
TL;DR: It is concluded that VEGF-B is dispensable for normal cardiac function under unstressed conditions and for HFD-induced metabolic changes.
Abstract: Vascular endothelial growth factor-B (VEGF-B) has been implicated to play a significant role in coronary vessel growth and endothelial uptake and transport of fatty acids in heart and skeletal muscle. Additionally, recent studies have shown that Vegf-b deficiency protects from high-fat diet (HFD)-induced diabetes and insulin resistance. We compared the cardiac function and the effects of HFD on body composition and glucose metabolism in two available Vegf-b knockout (Vegf-b-/- strains) mouse strains side by side with their respective littermate controls. We found no differences in HFD-induced weight gain, glucose tolerance or insulin resistance between the Vegf-b-/- strains and their littermate control mice. Furthermore, there was no difference in basal cardiac function and cardiac expression of genes involved in glucose or fatty acid metabolism between the Vegf-b-/- strains and their littermate control mice. We conclude that VEGF-B is dispensable for normal cardiac function under unstressed conditions and for HFD-induced metabolic changes.

Journal ArticleDOI
TL;DR: It is shown here that the lymphatic network can be regenerated using lymphatic vascular growth factor therapy in combination with lymph node transfer, and VEGF-C provides the preferred alternative for growth factors therapy of lymphedema, due to the superior lymphangiogenic response and minor blood vascular effects.

Journal ArticleDOI
TL;DR: The results show that the kinase activity of the endothelial bone marrow kinase in chromosome X (Bmx) protein is necessary for the development of pathological cardiac hypertrophy, and suggest that the endothelium Bmx tyrosine kinase could provide a target to attenuate theDevelopment of cardiachypertrophy.
Abstract: Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy.

Journal ArticleDOI
31 Jul 2015-PLOS ONE
TL;DR: Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.
Abstract: Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.

Journal ArticleDOI
TL;DR: Donor heart treatment with COMP‐Ang1 is suggested to have important clinical implications in the prevention of primary and subsequent long‐term injury and dysfunction in cardiac allografts.

Journal ArticleDOI
TL;DR: This study does not meet the recently published consensus criteria on the immunohistochemical detection of ocular lymphatic vessels, and therefore requires critical revision, and the findings of Koina et al. confirm previous reports of net-like structures.
Abstract: We read with interest the recent article by Koina et al.1 suggesting evidence for the presence of lymphatic vessels in the developing and adult human choroid. However, this study does not meet the recently published consensus criteria on the immunohistochemical detection of ocular lymphatic vessels,2 and therefore, in our opinion, requires critical revision. First, appropriate positive and unequivocal negative controls are not presented in the study of Koina et al. In particular, when describing novel anatomical structures for the first time, and in order to change an existing dogma, a detailed documentation of blood and lymphatic vessel detection in the control tissue is mandatory. The provided supplementary data do not fulfill these criteria. Second, the immunohistochemical marker panel used is critical. Endomucin does not represent an established lymphatic marker,3,4 but is rather expressed by “endothelial cells along the whole vascular tree including lymphatic vessels.”5 Thus, an unequivocal discrimination between blood and lymphatic vessels is impossible with this marker. A further discrepancy is the use of the transcription factor prospero-related homebox gene-1 (Prox-1) as an extranuclear lymphatic endothelial precursor marker. Although reports of the extranuclear presence of PROX-1 in cell types other than lymphatic endothelium exist,6–8 PROX-1 clearly shows a nuclear expression in lymphatic endothelia in human,9 as well as mouse10 and avian,11 embryos, retaining its nuclear localization into adulthood.12–14 On the other hand, it is not clear why lymphatic endothelial surface markers, such as podoplanin, lymphatic vascular endothelial-specific hyaluronic acid receptor-1 (LYVE-1), and the vascular endothelial marker CD34 display nuclear expression in this study. Additionally, the only lymphatic endothelial cell marker used in whole mounts is VEGFR-3, which is also expressed in fenestrated blood vessels, and, as such, also in the choriocapillaris.15,16 Morphologically, the supposed lymphatic VEGFR-3–positive vessels are indistinguishable from the honeycomb-like lobular pattern of the choriocapillaris.17 Furthermore, the study of Koina et al. includes a blatant inconsistency in the use and documentation of immunohistochemical markers between fetal and adult eyes. Although one has to acknowledge that certain lymphatic markers might be expressed during embryogenesis, this pattern easily changes during maturation.18 Therefore, such an approach would require extensive comparison of the same markers in different ages, thus representing an extensive survey in its own right. However, this is not the case in the study of Koina et al. Third, the ultrastructural study would be greatly strengthened by immunoelectron microscopy. Indeed, anchoring filaments with a diameter of 40 to 100 A—becoming readily identifiable only at magnifications of 40,000× to 50,000×—are present in lymphatics,19 but could be easily present in the choroid as well without any association to lymphatic vessels,20–22 particularly in aged eyes with typical alterations of the extracellular matrix. For this purpose, as well as for ruling out Weibel-Palade bodies, serial ultrathin sectioning with appropriate labeling would be necessary. Despite possible postmortem tissue alterations, numerous previous studies successfully applied different detection systems for ultrastructural investigations using ocular human donor tissue.23–29 A limited use of immunomarkers for these investigations, as claimed, seems therefore not justified. In regard to the above-mentioned criticisms, the evidence presented in the study of Koina et al. does not justify the hypothesized paradigm shift that functional lymphatic vessels are present in the human choroid. Rather, the findings of Koina et al. confirm previous reports of net-like structures with a “pseudo-vessel” appearance in the human choroid endowed with lymphatic vascular precursor cells (represented as LYVE-1+ macrophages).25 Those “atypical” lymphatic-like cells (i.e., endothelial cells with divergent or uncommon immunohistochemical phenotypes) may also exist in other parts of the eye. For example, the endothelial cells of Schlemm's canal display many, but not all, features of terminally differentiated lymphatic endothelial cells, including responsiveness to VEGF-C–induced lymphangiogenesis.30 In closing, we acknowledge that the work of Koina et al. is a further contribution to our understanding of the choroid, but although the existence of lymphatics in the human choroid cannot be ruled out per se, because of the aforementioned points and the sheer volume of evidence to date, we maintain that the inner human eye and in particular the choroid should still be considered an immune-privileged site devoid of lymphatic vessels. Further unequivocal evidence of “typical lymphatic vessels” in the human choroid is still missing.

Journal ArticleDOI
TL;DR: The proposed image analysis-based tumour viability assessment resulted in a high agreement with expert annotations, and can be used in preclinical research settings by providing extraction of detailed information of the tumour microenvironment.
Abstract: Aims To build and evaluate an automated method for assessing tumour viability in histological tissue samples using texture features and supervised learning. Methods H&E-stained sections (n=56) of human non-small cell lung adenocarcinoma xenografts were digitised with a whole-slide scanner. A novel image analysis method based on local binary patterns and a support vector machine classifier was trained with a set of sample regions (n=177) extracted from the whole-slide images and tested with another set of images (n=494). The extracted regions, or single-tissue entity images, were chosen to represent as pure as possible examples of three morphological tissue entities: viable tumour tissue, non-viable tumour tissue and mouse host tissue. Results An agreement of 94.5% (area under the curve=0.995, kappa=0.90) was achieved to classify the single-tissue entity images in the test set (n=494) into the viable tumour and non-viable tumour tissue categories. The algorithm assigned 250 of the 252 non-viable and 219 of the 242 of viable sample regions to the correct categories, respectively. This corresponds to a sensitivity of 90.5% and specificity of 99.2%. Conclusions The proposed image analysis-based tumour viability assessment resulted in a high agreement with expert annotations. By providing extraction of detailed information of the tumour microenvironment, the automated method can be used in preclinical research settings. The method could also have implications in cancer diagnostics, cancer outcome prognostics and prediction.

Journal ArticleDOI
TL;DR: Results indicate that immunohistochemical detection of PROX1 correlates with a more malignant phenotype in rectal NETs and may be involved in progression of rectalNETs as a part of the Wnt pathway.
Abstract: PROX1 is a homeobox transcription factor involved in the development of the lens, liver and heart and found upregulated in colorectal cancers. We studied PROX1 expression by immunohistochemistry in rectal neuroendocrine tumors (NETs). Approximately 10 to 15 % of gastroenteropancreatic NETs occur in the rectum, and some may metastasize. Yet little is known about the molecular pathogenesis of rectal NETs or their metastasis propensity. The objectives were to find out whether PROX1 plays a role in progression of rectal NETs and whether it has value as prognostic marker. In grading of rectal NETs, we applied the WHO 2010 classification. We carried out immunohistochemical staining of PROX1 on 72 primary tumors and six metastases and evaluated nuclear positivity in each tumor. Correlation between PROX1 expression, metastasis and patient survival was then assessed. Annexin A1, a downstream target of PROX1, was immunohistochemically assessed in 18 tumors. PROX1 protein was detected in about half of the tumors, with stronger expression in metastasized cases. PROX1 expression correlated with tumor metastasis and patient prognosis. Annexin A1 was negative in most of the high-grade tumors correlating strongly with grade and metastatic potential. Our results indicate that immunohistochemical detection of PROX1 correlates with a more malignant phenotype in rectal NETs. High PROX1 expression was associated with increased metastatic potential and poor patient survival but not as strongly as grade by the WHO 2010 classification. PROX1 may be involved in progression of rectal NETs as a part of the Wnt pathway.

Book ChapterDOI
01 Jan 2015
TL;DR: Preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice.
Abstract: The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.

Patent
23 Jan 2015
TL;DR: In this paper, a method of producing fully processed mature VEGF-C polypeptide by a cell and a method for cleaving VEGFs-Cpolypeptides was presented.
Abstract: The present invention relates to the utilization of ADAMTS3 metalloprotease. More specifically, the present invention relates to a method of producing fully processed mature VEGF-C polypeptide by a cell and a method of cleaving VEGF-C polypeptides. Furthermore, the present invention relates to different uses of ADAMTS3, ADAMTS3 inhibitors or compositions comprising ADAMTS3 or ADAMTS3 inhibitors, and a method of treating a lymphatic disorder. In addition, the invention relates to a method of producing VEGF-Cbinding molecules.

Patent
20 Jan 2015
TL;DR: In this paper, a method, uses and compositions for treating glaucoma or ocular hypertension using VEGFR-3 activating ligand VEGF-C was presented.
Abstract: The present invention relates to therapeutic methods, uses and compositions for treating glaucoma or ocular hypertension. More specifically, the present invention relates to methods, uses and compositions utilizing VEGFR-3 activating ligand VEGF-C.