scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts.
Abstract: Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.

2,737 citations

Journal ArticleDOI
TL;DR: The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell–cell communication.
Abstract: Blood vessels and lymphatic vessels form extensive networks that are essential for the transport of fluids, gases, macromolecules and cells within the large and complex bodies of vertebrates. Both of these vascular structures are lined with endothelial cells that integrate functionally into different organs, acquire tissue-specific specialization and retain plasticity; thereby, they permit growth during tissue repair or in disease settings. The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell-cell communication.

1,856 citations

Journal ArticleDOI
TL;DR: VEGF‐C is a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.
Abstract: Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2) The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2 In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed

1,734 citations

Journal ArticleDOI
TL;DR: The occurrence and biological significance of intratumoral lymphangiogenesis within human breast cancers after orthotopic transplantation onto nude mice are established and VEGF-C is identified as a molecular link between tumor lymphang iogenesis and metastasis.
Abstract: Metastasis of breast cancer occurs primarily through the lymphatic system, and the extent of lymph node involvement is a key prognostic factor for the disease. Whereas the significance of angiogenesis for tumor progression has been well documented, the ability of tumor cells to induce the growth of lymphatic vessels (lymphangiogenesis) and the presence of intratumoral lymphatic vessels have been controversial. Using a novel marker for lymphatic endothelium, LYVE-1, we demonstrate here the occurrence of intratumoral lymphangiogenesis within human breast cancers after orthotopic transplantation onto nude mice. Vascular endothelial growth factor (VEGF)-C overexpression in breast cancer cells potently increased intratumoral lymphangiogenesis, resulting in significantly enhanced metastasis to regional lymph nodes and to lungs. The degree of tumor lymphangiogenesis was highly correlated with the extent of lymph node and lung metastases. These results establish the occurrence and biological significance of intratumoral lymphangiogenesis in breast cancer and identify VEGF-C as a molecular link between tumor lymphangiogenesis and metastasis.

1,671 citations

Journal ArticleDOI
TL;DR: The presence of a lymphatic vessel network in the dura mater of the mouse brain is discovered and it is shown that these dural lymphatic vessels are important for the clearance of macromolecules from the brain.
Abstract: The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease.

1,458 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations