scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
01 Jun 2007-Cell
TL;DR: The interaction of Ras with p110alpha is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation in normal and malignant cell growth in vivo.

558 citations

Journal ArticleDOI
TL;DR: The VEGF receptors transduce signals mediating endothelial cell proliferation, migration, organization into functional vessels and remodeling of the vessel network are studied.

554 citations

Journal ArticleDOI
TL;DR: PDGF-DD is the first known PDGFR-β-specific ligand, and its unique receptor specificity indicates that it may be important for development and pathophysiology in several organs.
Abstract: The term 'platelet-derived growth factor' (PDGF) refers to a family of disulphide-bonded dimeric isoforms that are important for growth, survival and function in several types of connective tissue cell. So far, three different PDGF chains have been identified - the classical PDGF-A and PDGF-B and the recently identified PDGF-C. PDGF isoforms (PDGF-AA, AB, BB and CC) exert their cellular effects by differential binding to two receptor tyrosine kinases. The PDGF alpha-receptor (PDGFR-alpha) binds to all three PDGF chains, whereas the beta-receptor (PDGFR-beta) binds only to PDGF-B. Gene-targeting studies using mice have shown that the genes for PDGF-A and PDGF-B, as well as the two PDGFR genes, are essential for normal development. Furthermore, overexpression of PDGFs is linked to different pathological conditions, including malignancies, atherosclerosis and fibroproliferative diseases. Here we have identify and characterize a fourth member of the PDGF family, PDGF-D. PDGF-D has a two-domain structure similar to PDGF-C and is secreted as a disulphide-linked homodimer, PDGF-DD. Upon limited proteolysis, PDGF-DD is activated and becomes a specific agonistic ligand for PDGFR-beta. PDGF-DD is the first known PDGFR-beta-specific ligand, and its unique receptor specificity indicates that it may be important for development and pathophysiology in several organs.

545 citations

Journal ArticleDOI
TL;DR: The results suggest that FGFR‐4 along with other fibroblast growth factor receptors performs cell lineage and tissue‐specific functions.
Abstract: We have previously identified two novel members of the fibroblast growth factor receptor (FGFR) gene family expressed in K562 erythroleukemia cells. Here we report cDNA cloning and analysis of one of these genes, named FGFR-4. The deduced amino acid sequence of FGFR-4 is 55% identical with both previously characterized FGFRs, flg and bek, and has the structural characteristics of a FGFR family member including three immunoglobulin-like domains in its extracellular part. Antibodies raised against the carboxy terminus of FGFR-4 detected 95 and 110 kd glycoproteins with a protein backbone of 88 kd in COS cells transfected with a FGFR-4 cDNA expression vector. The FGFR-4 protein expressed in COS cells could also be affinity-labeled with radioiodinated acidic FGF. Furthermore, ligand binding experiments demonstrated that FGFR-4 binds acidic FGF with high affinity but does not bind basic FGF. FGFR-4 is expressed as a 3.0 kb mRNA in the adrenal, lung, kidney, liver, pancreas, intestine, striated muscle and spleen tissues of human fetuses. The expression pattern of FGFR-4 is distinct from that of flg and bek and the yet additional member of the same gene family, FGFR-3, which we have also cloned from the K562 leukemia cells. Our results suggest that FGFR-4 along with other fibroblast growth factor receptors performs cell lineage and tissue-specific functions.

542 citations

Journal ArticleDOI
TL;DR: It is concluded that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries.
Abstract: Vascular endothelial cells are critical for the development and function of the mammalian circulatory system. We have analyzed the role of the endothelial cell-specific receptor tyrosine kinase TIE in the mouse vasculature. Mouse embryos homozygous for a disrupted Tie allele developed severe edema, their microvasculature was ruptured and they died between days 13.5 and 14.5 of gestation. The major blood vessels of the homozygous embryos appeared normal. Cells lacking a functional Tie gene were unable to contribute to the adult kidney endothelium in chimeric animals, further demonstrating the intrinsic requirement for TIE in endothelial cells. We conclude that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. TIE is not essential, however, for vasculogenesis, the early differentiation of endothelial cells.

536 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations