scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
01 Dec 2018
TL;DR: This study suggests that transient local overexpression of VEGFR2 ligands in the peri-implant tissues at the time of graft implantation is a novel strategy to increase endothelialization of high-porosity ePTFE vascular grafts and improve the patency of small-diameter vascular prostheses.
Abstract: Background Prosthetic vascular grafts in humans characteristically lack confluent endothelialization regardless of the duration of implantation. Use of high-porosity grafts has been proposed as a way to induce endothelialization through transgraft capillarization, although early experiments failed to show increased healing in man. Objectives We hypothesized that transduction of tissues around the prosthetic conduit with vectors encoding VEGF receptor-2 (VEGFR2) ligands would augment transinterstitial capillarization and induce luminal endothelialization of high-porosity ePTFE grafts. Methods Fifty-two NZW rabbits received 87 ePTFE uni- or bilateral end-to-end interposition grafts in carotid arteries. Rabbits were randomized to local therapy with adenoviruses encoding AdVEGF-A165, AdVEGF-A109 or control AdLacZ and analyzed at 6 and 28 days after surgery by contrast-enhanced ultrasound and histology. Results AdVEGF-A165 and AdVEGF-A109 dramatically increased perfusion in perigraft tissues at 6 days (14.2 ± 3.6 or 16.7 ± 2.6-fold increases, P Conclusions This study suggests that transient local overexpression of VEGFR2 ligands in the peri-implant tissues at the time of graft implantation is a novel strategy to increase endothelialization of high-porosity ePTFE vascular grafts and improve the patency of small-diameter vascular prostheses.

14 citations

Journal ArticleDOI
TL;DR: The regulation of the ODC activity by IL-2 is a primary event inIL-2-induced cell proliferation and occurs at the post-transcriptional level, possibly by stabilizing the O DC mRNA and affecting the efficiency of translation of the messenger.

13 citations

Journal ArticleDOI
TL;DR: It is shown that DG neurogenesis acts to replace lost neurons and restore lost functions even following massive (>50%) neuronal loss, and suggests hippocampal NSCs as a critical reservoir enabling recovery from catastrophic DG damage.
Abstract: Multiple insults to the brain lead to neuronal cell death, thus raising the question to what extent can lost neurons be replenished by adult neurogenesis. Here we focused on the hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal neurogenesis was extensively studied with regard to its contribution to cognitive enhancement, we focused on their underestimated capability to repair a massively injured, nonfunctional DG. To address this issue, we inflicted substantial DG-specific damage in mice of either sex either by diphtheria toxin-based ablation of >50% of mature DG granule cells (GCs) or by prolonged brain-specific VEGF overexpression culminating in extensive, highly selective loss of DG GCs (thereby also reinforcing the notion of selective DG vulnerability). The neurogenic system promoted effective regeneration by increasing NSCs proliferation/survival rates, restoring a nearly original DG mass, promoting proper rewiring of regenerated neurons to their afferent and efferent partners, and regaining of lost spatial memory. Notably, concomitantly with the natural age-related decline in the levels of neurogenesis, the regenerative capacity of the hippocampus also subsided with age. The study thus revealed an unappreciated regenerative potential of the young DG and suggests hippocampal NSCs as a critical reservoir enabling recovery from catastrophic DG damage.SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis has been extensively studied in the context of its role in cognitive enhancement, but whether, and to what extent can dentate gyrus (DG)-resident neural stem cells drive regeneration of an injured DG has remained unclear. Here we show that DG neurogenesis acts to replace lost neurons and restore lost functions even following massive (>50%) neuronal loss. Age-related decline of neurogenesis is paralleled by a progressive decline of regenerative capacity. Considering also the exceptional vulnerability of the DG to insults, these findings provide a further rationale for maintaining DG neurogenesis in adult life.

13 citations

Patent
26 Feb 2001
TL;DR: In this paper, the authors provided polypeptides that bind cellular receptors for vascular endothelial growth factor polypepsides; polynucleotides encoding such polypeptic molecules; compositions comprising the poly peptides and polyn nucleotides; and methods and uses involving the foregoing.
Abstract: The present invention provides polypeptides that bind cellular receptors for vascular endothelial growth factor polypeptides; polynucleotides encoding such polypeptides; compositions comprising the polypeptides and polynucleotides; and methods and uses involving the foregoing. Some polypeptides of the invention exhibit unique receptor binding profiles compared to known, naturally occurring vascular endothelial growth factors.

13 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations