scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: A putative integrin-binding sequence with anti-migratory activity within endostatin is described, which inhibited basic fibroblast growth factor-induced directional migration and tubular morphogenesis of microvascular endothelial cells and induced the loss of focal adhesions and actin stress fibers in these cells.

115 citations

Journal ArticleDOI
TL;DR: Vascular endothelial growth factor B (VEGF‐B) is structurally closely related to VEGF and binds one of its receptors, VEGFR‐1, and may have a role in vascularization of the heart, skeletal muscles and developing bones, and in paracrine interactions between endothelial and surrounding muscle cells.
Abstract: Vascular endothelial growth factor B (VEGF-B) is structurally closely related to VEGF and binds one of its receptors, VEGFR-1. In situ hybridization and immunohistochemistry were used to localize VEGF-B mRNA and protein in embryonic mouse tissues. In 8.5–17.5 day embryos, VEGF-B was most prominently expressed in the developing myocardium, but not in the cardiac cushion tissue. The strong expression in the heart persisted at later developmental stages, while weaker signals were obtained from several other tissues, including developing muscle, bone, pancreas, adrenal gland, and from the smooth muscle cell layer of several larger vessels, but not from endothelial cells. VEGF-B is likely to act in a paracrine fashion, as its receptor is almost exclusively present in endothelial cells. VEGF-B may have a role in vascularization of the heart, skeletal muscles and developing bones, and in paracrine interactions between endothelial and surrounding muscle cells. Dev Dyn 1999;215:12–25. © 1999 Wiley-Liss, Inc.

115 citations

Journal ArticleDOI
TL;DR: It is shown that vascular endothelial growth factor C (Vegfc), an angiogenic as well as a lymphangiogenic factor, is unexpectedly involved in this process in zebrafish, and implicate Vegfc signalling in two distinct steps during endoderm development, first during the initial differentiation of the dorsalendoderm, and second in the coalescence of the anterior endODerm to the midline.
Abstract: During embryogenesis, complex morphogenetic events lead endodermal cells to coalesce at the midline and form the primitive gut tube and associated organs. While several genes have recently been implicated in endoderm differentiation, we know little about the genes that regulate endodermal morphogenesis. Here, we show that vascular endothelial growth factor C (Vegfc), an angiogenic as well as a lymphangiogenic factor, is unexpectedly involved in this process in zebrafish. Reducing Vegfc levels using morpholino antisense oligonucleotides, or through overexpression of a soluble form of the VEGFC receptor, VEGFR-3, affects the coalescence of endodermal cells in the anterior midline, leading to the formation of a forked gut tube and the duplication of the liver and pancreatic buds. Further analyses indicate that Vegfc is additionally required for the initial formation of the dorsal endoderm. We also demonstrate that Vegfc is required for vasculogenesis as well as angiogenesis in the zebrafish embryo. These data argue for a requirement of Vegfc in the developing vasculature and, more surprisingly, implicate Vegfc signalling in two distinct steps during endoderm development, first during the initial differentiation of the dorsal endoderm, and second in the coalescence of the anterior endoderm to the midline.

113 citations

Book ChapterDOI
TL;DR: This chapter describes the properties of the major defined matrix components, and considers their role for the cell phenotype, and emphasizes on the pericellular matrix components that seem to be involved in cell adhesion, and less on the extracellular matrix material.
Abstract: Publisher Summary This chapter describes the properties of the major defined matrix components, and considers their role for the cell phenotype The principal function of the matrix is to give mechanical support and to anchor cells in tissue type-specific structures, but it may also have other duties, such as that of a selective permeability barrier The composition of the matrix surrounding cells, the pericellular matrix, is closely dependent on the cell type and the degree of its differentiation It has been becoming increasingly evident that altered or defective cell surface-matrix interactions may be salient features of the malignant phenotype Failure to maintain an intact basal lamina may be involved in the neoplastic disorganization of tissue architecture and development of invasive tumors The chapter emphasizes on the pericellular matrix components that seem to be involved in cell adhesion, and less on the extracellular matrix material Furthermore, recent results on epithelial cells, proteolysis of basal laminae, and interstitial matrix, and to the matrix components that are characteristic of some tumor cells are also discussed in the chapter

113 citations

Journal ArticleDOI
TL;DR: It is suggested that KSHV-induced EndMT may contribute to KS development by giving rise to infected, invasive cells while providing the virus a permissive cellular microenvironment for efficient spread.

113 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations