scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrated that VEGF-C-deficient heart has severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned coronary artery stems.
Abstract: Coronary arteries (CAs) stem from the aorta at 2 highly stereotyped locations, deviations from which can cause myocardial ischemia and death. CA stems form during embryogenesis when peritruncal blood vessels encircle the cardiac outflow tract and invade the aorta, but the underlying patterning mechanisms are poorly understood. Here, using murine models, we demonstrated that VEGF-C-deficient hearts have severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned CA stems. We observed that VEGF-C is widely expressed in the outflow tract, while cardiomyocytes develop specifically within the aorta at stem sites where they surround maturing CAs in both mouse and human hearts. Mice heterozygous for islet 1 (Isl1) exhibited decreased aortic cardiomyocytes and abnormally low CA stems. In hearts with outflow tract rotation defects, misplaced stems were associated with shifted aortic cardiomyocytes, and myocardium induced ectopic connections with the pulmonary artery in culture. These data support a model in which CA stem development first requires VEGF-C to stimulate vessel growth around the outflow tract. Then, aortic cardiomyocytes facilitate interactions between peritruncal vessels and the aorta. Derangement of either step can lead to mispatterned CA stems. Studying this niche for cardiomyocyte development, and its relationship with CAs, has the potential to identify methods for stimulating vascular regrowth as a treatment for cardiovascular disease.

88 citations

Journal ArticleDOI
TL;DR: This study demonstrates that RNA splicing, protein glycosylation, and proteolysis are mechanisms for generating structural diversity of mouse VEGF-D.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGfr-3 D4-5 homodimer were analyzed.
Abstract: Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1–3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4–7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.

87 citations

Journal ArticleDOI
TL;DR: It is shown that tumors of NCAM-deficient Rip1Tag2 transgenic mice exhibit up-regulated expression of the lymphangiogenic factors vascular endothelial growth factor (VEGF)-C and -D and VEGF-C- and V EGF-D-mediated lymphang iogenesis and lymph node metastasis in immunocompetent mice.
Abstract: Reduced expression of neural cell adhesion molecule (NCAM) has been implicated in the progression to tumor malignancy in cancer patients. Previously, we have shown that the loss of NCAM function causes the formation of lymph node metastasis in a transgenic mouse model of pancreatic beta cell carcinogenesis (Rip1Tag2). Here we show that tumors of NCAM-deficient Rip1Tag2 transgenic mice exhibit up-regulated expression of the lymphangiogenic factors vascular endothelial growth factor (VEGF)-C and -D (17% in wild-type versus 60% in NCAM-deficient Rip1Tag2 mice) and, with it, increased lymphangiogenesis (0% in wild-type versus 19% in NCAM-deficient Rip1Tag2 mice). Repression of VEGF-C and -D function by adenoviral expression of a soluble form of their cognate receptor, VEGF receptor-3, results in reduced tumor lymphangiogenesis (56% versus 28% in control versus treated mice) and lymph node metastasis (36% versus 8% in control versus treated mice). The results indicate that the loss of NCAM function causes lymph node metastasis via VEGF-C- and VEGF-D-mediated lymphangiogenesis. These results also establish Rip1Tag2;NCAM-deficient mice as a unique model for stochastic, endogenous tumor lymphangiogenesis and lymph node metastasis in immunocompetent mice.

87 citations

Patent
01 Aug 1996
TL;DR: In this paper, polypeptide ligands for the receptor tyrosine kinase, Flt4, were provided, along with cDNAs and vectors encoding the ligands, pharmaceutical compositions and diagnostic reagents.
Abstract: Provided are polypeptide ligands for the receptor tyrosine kinase, Flt4. Also provided are cDNAs and vectors encoding the ligands, pharmaceutical compositions and diagnostic reagents comprising the ligands, and methods of making ans using the ligands.

86 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations