scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: Bmx shows a unique specificity of expression among tyrosine kinase genes and may be involved in signal transduction in endocardial and arterial endothelial cells, and the results suggest that specific signalTransduction mechanisms are present in such endothelia.
Abstract: Background The growth and differentiation of endothelial cells are regulated by signal transduction through tyrosine protein kinases. Recently, a novel cytoplasmic tyrosine kinase gene, Bmx (Bone Marrow tyrosine kinase gene in chromosome X), was identified in human bone marrow RNA and found to be expressed predominantly in myeloid hematopoietic cell lineages. Our preliminary analyses indicated that the Bmx gene was also highly expressed in human heart. Methods and Results Mouse Bmx cDNA was isolated, sequenced, and found to encode a polypeptide ≈91% identical to the human Bmx tyrosine kinase. Northern blotting and in situ hybridization of tissue sections indicated that Bmx mRNA is specifically expressed in the endocardium of the developing heart as well as in the endocardium of the left ventricle and in the endothelium of large arteries in adult mice. A weak signal was seen also in coronary arterial endothelium. Conclusions Bmx shows a unique specificity of expression among tyrosine kinase genes and may b...

78 citations

Journal ArticleDOI
TL;DR: The data show that loss of Tie1 results in lymphatic vascular abnormalities that precede the blood vessel phenotype, indicating that Tie1 is involved in lymphangiogenesis and suggest differential requirements for Tie1 signaling in the two vascular compartments.
Abstract: Objective— Studies of Tie1 gene-targeted embryos have demonstrated loss of blood vessel integrity, but the relevance of Tie1 in lymphatic vasculature development is unknown. We tested the hypothesis that the swelling observed in Tie1 mutant embryos is associated with lymphatic vascular defects. Methods and Results— We could extend the survival of the Tie1-deficient embryos in the ICR background, which allowed us to study their lymphatic vessel development. At embryonic day (E) 14.5, the Tie1−/− embryos had edema and hemorrhages and began to die. Immunohistochemical analysis revealed that they have abnormal lymph sacs. Tie1−/− mutants were swollen already at E12.5 without signs of hemorrhage. Their lymph sacs were abnormally patterned, suggesting that lymphatic malformations precede the blood vascular defects. We generated mice with a conditional Cre/loxP Tie1neo locus and found that the homozygous Tie1neo/neo hypomorphic embryos survived until E15.5 with lymphatic malformations resembling those seen in th...

77 citations

Journal ArticleDOI
TL;DR: It is found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature and targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.
Abstract: The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.

75 citations

Journal ArticleDOI
TL;DR: The results show that enhanced expression of erbB2 is associated with hormone deprivation and growth arrest of the estrogen‐dependent breast cancer cell line ZR‐75‐1 and may have important estrogen‐regulated functions which are not related to cell proliferation.
Abstract: Amplification and enhanced expression of the erbB2/HER-2/neu gene has been associated with an increased growth rate and poor prognosis of human breast cancer. We have studied the relationship between erbB2 expression and the regulation of cell growth by estrogen and anti-estrogens in the human breast cancer cell line ZR-75-1 in vitro and in athymic nude mice, pS2 being used as a marker gene for estrogen-stimulated gene expression. Only low amounts of erbB2 mRNA were seen in the cells grown in vitro in the presence of estrogen which stimulated the cells to proliferate rapidly and induced the expression of pS2 mRNA. Upon hormone withdrawal, erbB2 mRNA and protein increased, while pS2 mRNA declined to an undetectable level and cell proliferation slowed down. Opposite but more rapid changes were observed upon estrogen addition. The anti-estrogens toremifene and tamoxifen inhibited estrogen induction of pS2 expression, down-regulation of erbB2 expression and proliferation of the ZR-75-I cells in a concentration-dependent manner. Similar results were obtained in nude mice. ZR-75-I cells formed tumors only in mice carrying estrogen pellets. In these tumors little erbB2 mRNA was seen. Concomitant administration of toremifene or tamoxifen increased erbB2 mRNA and abolished pS2 mRNA. Our results show that enhanced expression of erbB2 is associated with hormone deprivation and growth arrest of the estrogen-dependent breast cancer cell line ZR-75-I. Thus, in mammary epithelial cells, erbB2 may have important estrogen-regulated functions which are not related to cell proliferation.

75 citations

Journal ArticleDOI
TL;DR: This review will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions, and highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors and their high-affinity tyrosine kinase VEGF receptors.
Abstract: Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.

75 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations