scispace - formally typeset
Search or ask a question
Author

Kari Alitalo

Bio: Kari Alitalo is an academic researcher from University of Helsinki. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor C. The author has an hindex of 174, co-authored 817 publications receiving 114231 citations. Previous affiliations of Kari Alitalo include Mount Sinai Hospital, Toronto & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: Gene transfer offers considerable potential for altering vessel wall physiology and intervention in vascular disease, and there is great interest in developing optimal strategies and vectors for efficient, targeted gene delivery into a vessel wall.
Abstract: Background Gene transfer offers considerable potential for altering vessel wall physiology and intervention in vascular disease. Therefore, there is great interest in developing optimal strategies and vectors for efficient, targeted gene delivery into a vessel wall. Methods We studied adeno-associated viruses (AAV; 9 × 108 to 4 × 109 TU/ml) for their usefulness to transduce rabbit arteries in vivo in comparison with adenoviruses (Adv; 1 × 109 to 1 × 1010 pfu/ml). 100 µl of viruses or placebo solution were injected intraluminally into transiently isolated carotid segments. Results In normal arteries AAV transduced mainly medial smooth muscle cells (SMC) while Adv transduced exclusively endothelial cells (EC). Mechanical injury to EC layer and internal elastic lamina enabled Adv to penetrate and transduce medial SMC. Transgene expression in EC after the AAV-mediated gene transfer was very low. The use of the EC-specific Tie-1 promoter did not lead to specific transgene expression in EC. Transgene expression in SMC persisted for at least 100 days after the AAV treatment whereas the Adv-mediated effect diminished in 14 days. AAV caused only a modest increase in EC VCAM-1 expression and proliferation rate of vascular cells as compared with the mock-treated arteries while Adv caused an extensive inflammatory cell infiltration, VCAM-1 expression, vascular cell proliferation and morphological damages. Conclusions Significant differences were observed between the AAV and the Adv vectors in their patterns of arterial transduction and consequent inflammatory responses. These distinct properties may be utilized for different applications in vascular biology research and gene therapy for cardiovascular diseases. Copyright © 2004 John Wiley & Sons, Ltd.

66 citations

Journal ArticleDOI
TL;DR: It is shown that efficient activation of VEGF-C requires its C-terminal domain both in vitro and in a transgenic mouse model, and that CCBE1 promotes VEGFR-3 signaling and lymphangiogenesis by different mechanisms, which are mediated independently by the two domains ofCCBE1.
Abstract: The collagen- and calcium-binding EGF domains 1 (CCBE1) protein is necessary for lymphangiogenesis. Its C-terminal collagen-like domain was shown to be required for the activation of the major lymphangiogenic growth factor VEGF-C (Vascular Endothelial Growth Factor-C) along with the ADAMTS3 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-3) protease. However, it remained unclear how the N-terminal domain of CCBE1 contributed to lymphangiogenic signaling. Here, we show that efficient activation of VEGF-C requires its C-terminal domain both in vitro and in a transgenic mouse model. The N-terminal EGF-like domain of CCBE1 increased VEGFR-3 signaling by colocalizing pro-VEGF-C with its activating protease to the lymphatic endothelial cell surface. When the ADAMTS3 amounts were limited, proteolytic activation of pro-VEGF-C was supported by the N-terminal domain of CCBE1, but not by its C-terminal domain. A single amino acid substitution in ADAMTS3, identified from a lymphedema patient, was associated with abnormal CCBE1 localization. These results show that CCBE1 promotes VEGFR-3 signaling and lymphangiogenesis by different mechanisms, which are mediated independently by the two domains of CCBE1: by enhancing the cleavage activity of ADAMTS3 and by facilitating the colocalization of VEGF-C and ADAMTS3. These new insights should be valuable in developing new strategies to therapeutically target VEGF-C/VEGFR-3-induced lymphangiogenesis.

66 citations

Patent
14 Nov 1994
TL;DR: The FLT4 gene, expression systems and proteins are provided for use in diagnosis and treatment of conditions related to the tyrosine kinase receptor encoded by the FLT 4 gene.
Abstract: FLT4 gene, expression systems and proteins are provided for use in diagnosis and treatment of conditions related to the tyrosine kinase receptor encoded by the FLT4 gene.

66 citations

Journal ArticleDOI
TL;DR: The results show that VEGF-C provides the preferred alternative for growth factor therapy of lymphedema when compared to VEGf-C156S, due to the superior lymphangiogenic response and minor blood vessel effects, and suggest that activation of both VEGFR-2 and V EGFR-3 might be needed for efficient lymphANGiogenesis.
Abstract: VEGF-C156S, a lymphangiogenesis-specific form of vascular endothelial growth factor C (VEGF-C), has been considered as a promising candidate for the experimental pro-lymphangiogenic treatment, as it lacks potential angiogenic effects. As a precursor to future clinical trials, the therapeutic efficacy and blood vascular side effects of VEGF-C and VEGF-C156S were compared in a large animal model of secondary lymphedema. Combination of lymphatic growth factor treatment and autologous lymph node transfer was used to normalize the lymphatic anatomy after surgical excision of lymphatic tissue. Lymph vessels around the inguinal lymph node of female domestic pigs were destroyed in order to impair the normal lymphatic drainage from the hind limb. Local injections of adenoviruses (Ad) encoding VEGF-C or VEGF-C156S were used to enhance the regrowth of the lymphatic vasculature. AdLacZ (β-galactosidase) and saline injections served as controls. Both VEGF-C and VEGF-C156S induced growth of new lymphatic vessels in the area of excision, although lymphangiogenesis was notably stronger after VEGF-C treatment. Also the transferred lymph nodes were best-preserved in the VEGF-C-treated pigs. Despite the enlargement of blood vessels following the VEGF-C therapy, no signs of sprouting angiogenesis or increased blood vascular permeability in the form of increased wound exudate volumes were observed. Our results show that VEGF-C provides the preferred alternative for growth factor therapy of lymphedema when compared to VEGF-C156S, due to the superior lymphangiogenic response and minor blood vessel effects. Furthermore, these observations suggest that activation of both VEGFR-2 and VEGFR-3 might be needed for efficient lymphangiogenesis.

65 citations

Journal ArticleDOI
TL;DR: The results indicate that both transient and stable overexpression of either the c- myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein.
Abstract: The c-myc oncogene and its viral counterpart v-myc encode phosphoproteins which have been located within cell nuclei, excluding nucleoli. We have expressed the c-myc gene under the simian virus 40 early promoter and studied the distribution of its protein product in transient expression assays in COS, HeLa, and 293 cells. We found three distinct patterns of c-myc immunofluorescence in the transfected cells: one-third of the c-myc-positive cells displayed a diffuse nuclear distribution, and in two-thirds of the cells the c-myc fluorescence was accumulated either in small amorphous or in large multilobed phase-dense nuclear structures. Unexpectedly, these structures also stained for the HSP70 heat shock protein in both heat-shocked and untreated cells. Our results indicate that both transient and stable overexpression of either the c-myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein. Interestingly, the closely related N-myc protein does not stimulate substantial nuclear expression of the HSP70 protein. Studies with chimeric myc proteins revealed that polypeptide sequences encoded by the second exon of c-myc are involved in colocalization with HSP70.

65 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
09 Jan 1987-Science
TL;DR: Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer, and had greater prognostic value than most currently used prognostic factors in lymph node-positive disease.
Abstract: The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.

11,597 citations