scispace - formally typeset
Search or ask a question
Author

Karin A. Dahmen

Bio: Karin A. Dahmen is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Critical exponent & Ising model. The author has an hindex of 48, co-authored 198 publications receiving 11421 citations. Previous affiliations of Karin A. Dahmen include University of Southern California & Urbana University.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
06 Feb 2001
TL;DR: In this paper, a model of crackling noise in magnets is proposed, which is based on the renormalization group and scaling collapses in the model of cracks in a magnet.
Abstract: Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling Because these systems exhibit regular behavior over many decades of sizes, their behavior is likely independent of microscopic and macroscopic details, and progress can be made by the use of very simple models The fact that simple models and real systems can share the same behavior on a wide range of scales is called universality We illustrate these ideas using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses This field is still developing: we describe a number of continuing challenges

896 citations

Journal ArticleDOI
TL;DR: The zero-temperature random-field Ising model is used to study hysteretic behavior at first-order phase transitions using mean-field theory and results of numerical simulations in three dimensions are presented.
Abstract: We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations. There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present results of numerical simulations in three dimensions.

518 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of Al content and potential scan rate on stable/metastable pitting of Al xCoCrFeNi high-entropy alloys in a 3.5-wt. NaCl solution was investigated.

474 citations

Journal ArticleDOI
TL;DR: It is shown that the dynamics of cultured cortical networks are critical, and the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function.
Abstract: The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

404 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: In this article, a wide list of topics ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading are reviewed and connections between these problems and other, more traditional, topics of statistical physics are highlighted.
Abstract: Statistical physics has proven to be a fruitful framework to describe phenomena outside the realm of traditional physics. Recent years have witnessed an attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. A wide list of topics are reviewed ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading. The connections between these problems and other, more traditional, topics of statistical physics are highlighted. Comparison of model results with empirical data from social systems are also emphasized.

3,840 citations