scispace - formally typeset
Search or ask a question
Author

Karin Steinbach

Bio: Karin Steinbach is an academic researcher from University of Geneva. The author has contributed to research in topics: Experimental autoimmune encephalomyelitis & Cytotoxic T cell. The author has an hindex of 17, co-authored 30 publications receiving 1960 citations. Previous affiliations of Karin Steinbach include Saarland University & Katholieke Universiteit Leuven.

Papers
More filters
Journal ArticleDOI
01 May 2009-Stroke
TL;DR: The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation.
Abstract: Background and Purpose— Ischemic stroke leads to significant morbidity and mortality in the Western world Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage The understanding of postischemic inflammation is very limited The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia–reperfusion injury model Methods— Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets Results— Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells DCs exhi

831 citations

Journal ArticleDOI
01 Nov 2012-Blood
TL;DR: It is proposed that selective targeting of IL-17A signaling might provide a new therapeutic option for the treatment of stroke, and this aspect of the inflammatory cascade is also relevant in the human brain.

349 citations

Journal ArticleDOI
TL;DR: It is shown that the transient receptor potential melastatin 4 (TRPM4) cation channel is crucial in this process, and interference with TRPM4 could translate into a new neuroprotective treatment strategy.
Abstract: In multiple sclerosis, an inflammatory disease of the central nervous system (CNS), axonal and neuronal loss are major causes for irreversible neurological disability. However, which molecules contribute to axonal and neuronal injury under inflammatory conditions remains largely unknown. Here we show that the transient receptor potential melastatin 4 (TRPM4) cation channel is crucial in this process. TRPM4 is expressed in mouse and human neuronal somata, but it is also expressed in axons in inflammatory CNS lesions in experimental autoimmune encephalomyelitis (EAE) in mice and in human multiple sclerosis tissue. Deficiency or pharmacological inhibition of TRPM4 using the antidiabetic drug glibenclamide resulted in reduced axonal and neuronal degeneration and attenuated clinical disease scores in EAE, but this occurred without altering EAE-relevant immune function. Furthermore, Trpm4(-/-) mouse neurons were protected against inflammatory effector mechanisms such as excitotoxic stress and energy deficiency in vitro. Electrophysiological recordings revealed TRPM4-dependent neuronal ion influx and oncotic cell swelling upon excitotoxic stimulation. Therefore, interference with TRPM4 could translate into a new neuroprotective treatment strategy.

154 citations

Journal ArticleDOI
TL;DR: During viral infections, brain tissue–resident memory T cells (bTRM) prevent fatal brain infection after acquiring perforin- and IFN-γ–dependent effector functions through a pathway that involves presentation of cognate antigen on MHC-I.
Abstract: Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8(+) memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ-dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity.

149 citations

Journal ArticleDOI
TL;DR: A reduction of CD8+ MAIT cells in the blood of MS patients compared with healthy individuals, which significantly correlated with IL‐18 serum levels in MS patients, seems to play a role in the innate arm of immunopathology in MS.
Abstract: Recent findings indicate a pathogenic involvement of IL-17-producing CD8+ T cells in multiple sclerosis (MS). IL-17 production has been attributed to a subset of CD8+ T cells that belong to the mucosal-associated invariant T (MAIT) cell population. Here, we report a reduction of CD8+ MAIT cells in the blood of MS patients compared with healthy individuals, which significantly correlated with IL-18 serum levels in MS patients. In vitro stimulation of peripheral blood mononuclear cells from healthy individuals and MS patients with IL-18 specifically activated CD8+ MAIT cells. Moreover, IL-18 together with T-cell receptor stimulation induced, specifically on CD8+ MAIT cells, an upregulation of the integrin very late antigen-4 that is essential for the infiltration of CD8+ T cells into the CNS. Notably, we were able to identify CD8+ MAIT cells in MS brain lesions by immunohistochemistry while they were almost absent in the cerebrospinal fluid (CSF). In summary, our findings indicate that an IL-18–driven activation of CD8+ MAIT cells contributes to their CNS infiltration in MS, in turn leading to reduced CD8+ MAIT-cell frequencies in the blood. Therefore, CD8+ MAIT cells seem to play a role in the innate arm of immunopathology in MS.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Gaining a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.
Abstract: Immunity and inflammation are key elements of the pathobiology of stroke, a devastating illness second only to cardiac ischemia as a cause of death worldwide. The immune system participates in the brain damage produced by ischemia, and the damaged brain, in turn, exerts an immunosuppressive effect that promotes fatal infections that threaten the survival of people after stroke. Inflammatory signaling is involved in all stages of the ischemic cascade, from the early damaging events triggered by arterial occlusion to the late regenerative processes underlying post-ischemic tissue repair. Recent developments have revealed that stroke engages both innate and adaptive immunity. But adaptive immunity triggered by newly exposed brain antigens does not have an impact on the acute phase of the damage. Nevertheless, modulation of adaptive immunity exerts a remarkable protective effect on the ischemic brain and offers the prospect of new stroke therapies. As immunomodulation is not devoid of deleterious side effects, a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.

1,949 citations

Journal ArticleDOI
TL;DR: It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.
Abstract: Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.

1,701 citations

Journal ArticleDOI
19 Feb 2015-Nature
TL;DR: A fine-mapping algorithm is developed to identify candidate causal variants for 21 autoimmune diseases from genotyping data, and it is found that most non-coding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models.
Abstract: Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4(+) T-cell subsets, regulatory T cells, CD8(+) T cells, B cells, and monocytes. We find that ∼90% of causal variants are non-coding, with ∼60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regulators of immune differentiation and stimulus-dependent gene activation, but only 10-20% directly alter recognizable transcription factor binding motifs. Rather, most non-coding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models.

1,622 citations

Journal ArticleDOI
TL;DR: The current understanding of multiple sclerosis immunopathology is discussed, long-standing hypotheses regarding the role of the immune system in the disease are evaluated, and key questions that are still unanswered are delineated.
Abstract: Two decades of clinical experience with immunomodulatory treatments for multiple sclerosis point to distinct immunological pathways that drive disease relapses and progression. In light of this, we discuss our current understanding of multiple sclerosis immunopathology, evaluate long-standing hypotheses regarding the role of the immune system in the disease and delineate key questions that are still unanswered. Recent and anticipated advances in the field of immunology, and the increasing recognition of inflammation as an important component of neurodegeneration, are shaping our conceptualization of disease pathophysiology, and we explore the potential implications for improved healthcare provision to patients in the future.

1,482 citations

Journal ArticleDOI
TL;DR: An overview of the time‐dependent recruitment of different inflammatory cells following focal cerebral I/R is provided and certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke are highlighted.
Abstract: Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke.

1,315 citations