scispace - formally typeset
Search or ask a question
Author

Karina A. Markhieva

Bio: Karina A. Markhieva is an academic researcher from Peoples' Friendship University of Russia. The author has contributed to research in topics: Structural biology & Protein folding. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.

Papers
More filters
Posted ContentDOI
20 Sep 2021-bioRxiv
TL;DR: In this paper, the ability of AlphaFold to predict the impact of single mutations on protein stability and function has been examined, and it was shown that there is no correlation between alphaFold output metrics and change of protein stability or fluorescence.
Abstract: AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is "solved". However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability ({Delta}{Delta}G) and function. To study the question we extracted metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known {Delta}{Delta}G values. Additionally, we correlated the AlphaFold predictions on the impact of a single mutation on structure with a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold cannot be immediately applied to other problems or applications in protein folding.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: For example, AlphaFold2 as discussed by the authors generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor.
Abstract: Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been developed for the in silico folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of peptide-protein interactions. Our simple implementation of AlphaFold2 generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor. We explore what AlphaFold2 has memorized and learned, and describe specific examples that highlight differences compared to state-of-the-art peptide docking protocol PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing structural insight into a wide range of peptide-protein complexes, serving as a starting point for the detailed characterization and manipulation of these interactions.

390 citations

Journal ArticleDOI
TL;DR: In this paper , the AlphaFold2 (AF2) model was used to predict protein structural elements, including missense variants, function and ligand binding site predictions, and modeling of experimental structural data.
Abstract: Abstract Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.

122 citations

Journal ArticleDOI
21 Jul 2022-Science
TL;DR: Wang et al. as mentioned in this paper proposed two deep learning methods to design proteins that contain prespecified functional sites, which can enable the scaffolding of desired functional residues within a well-folded designed protein.
Abstract: The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, “constrained hallucination,” optimizes sequences such that their predicted structures contain the desired functional site. The second approach, “inpainting,” starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests. Description Designing around function Protein design has had success in finding sequences that fold into a desired conformation, but designing functional proteins remains challenging. Wang et al. describe two deep-learning methods to design proteins that contain prespecified functional sites. In the first, they found sequences predicted to fold into stable structures that contain the functional site. In the second, they retrained a structure prediction network to recover the sequence and full structure of a protein given only the functional site. The authors demonstrate their methods by designing proteins containing a variety of functional motifs. —VV Deep-learning methods enable the scaffolding of desired functional residues within a well-folded designed protein.

118 citations

Journal ArticleDOI
03 Mar 2022-eLife
TL;DR: In this article , an approach to drive AlphaFold2 to sample alternative conformations of topologically diverse transporters and G-protein-coupled receptors is presented.
Abstract: Equilibrium fluctuations and triggered conformational changes often underlie the functional cycles of membrane proteins. For example, transporters mediate the passage of molecules across cell membranes by alternating between inward- and outward-facing states, while receptors undergo intracellular structural rearrangements that initiate signaling cascades. Although the conformational plasticity of these proteins has historically posed a challenge for traditional de novo protein structure prediction pipelines, the recent success of AlphaFold2 (AF2) in CASP14 culminated in the modeling of a transporter in multiple conformations to high accuracy. Given that AF2 was designed to predict static structures of proteins, it remains unclear if this result represents an underexplored capability to accurately predict multiple conformations and/or structural heterogeneity. Here, we present an approach to drive AF2 to sample alternative conformations of topologically diverse transporters and G-protein-coupled receptors that are absent from the AF2 training set. Whereas models of most proteins generated using the default AF2 pipeline are conformationally homogeneous and nearly identical to one another, reducing the depth of the input multiple sequence alignments by stochastic subsampling led to the generation of accurate models in multiple conformations. In our benchmark, these conformations spanned the range between two experimental structures of interest, with models at the extremes of these conformational distributions observed to be among the most accurate (average template modeling score of 0.94). These results suggest a straightforward approach to identifying native-like alternative states, while also highlighting the need for the next generation of deep learning algorithms to be designed to predict ensembles of biophysically relevant states.

87 citations