scispace - formally typeset
Search or ask a question
Author

Karl Grönvold

Bio: Karl Grönvold is an academic researcher from University of Iceland. The author has contributed to research in topics: Basalt & Volcano. The author has an hindex of 39, co-authored 57 publications receiving 7032 citations.


Papers
More filters
Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: An undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period, shows a slow decline in temperatures that marked the initiation of the last glacial period.
Abstract: High-resolution record of Northern Hemisphere climate extending into the last interglacial period

2,522 citations

Journal ArticleDOI
TL;DR: In this article, four previously known ash layers (Ash Zones I and II, Saksunarvatn and the Settlement layer) all originating in Iceland have been identified in the Central Greenland ice core GRIP.

496 citations

Journal ArticleDOI
TL;DR: In this article, the boundary in lava composition coincides with a change in depth to the top of an axial magma lens seismic reflector, consistent with magmas from two separate reservoirs being erupted in the same event.
Abstract: uniform sediment cover were recovered from lava that buries older faulted terrain. The boundary in lava composition coincides with a change in depth to the top of an axial magma lens seismic reflector, consistent with magmas from two separate reservoirs being erupted in the same event. Chemical compositions from throughout the area indicate that lavas with identical compositions can be emplaced in separate volcanic eruptions within individual segments. A comparison of our results to global data on submarine mid-ocean ridge eruptions suggests consistent dependencies of erupted volume, activated fissure lengths, and chemical heterogeneity with spreading rate, consistent with expected eruptive characteristics from ridges with contrasting thermal properties and magma reservoir depths. INDEX TERMS: 3035 Marine Geology and Geophysics: Midocean ridge processes; 8414 Volcanology: Eruption mechanisms; 8439 Volcanology: Physics and chemistry of magma bodies; 3655 Mineralogy and Petrology: Major element composition; KEYWORDS: lava flow, chemical heterogeneity, erupted volume, lava morphology, side-scan sonar

259 citations

Journal ArticleDOI
01 Mar 1977-Nature
TL;DR: A major rifting episode is now occurring in north Iceland as mentioned in this paper, with a basaltic eruption, an exceptionally intense earthquake swarm and movement on an 80-km segment of the plate boundary.
Abstract: A major rifting episode is now occurring in north Iceland. This started on 20 December 1975, with a basaltic eruption, an exceptionally intense earthquake swarm and movement on an 80-km segment of the plate boundary. Inflation and deflation of the Krafla caldera indicate upwelling of magma and injection into the rift zone. Historical records show that similar episodic rifting occurs in this region every 100–150 yr.

254 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested that primary 3He/4He ratios may have been modified by incorporation of radiogenic helium developed within the Icelandic crust to impose a larger range of 3he/4he ratios on the erupted products than was actually inherited from the mantle beneath Iceland.

233 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations

Journal ArticleDOI
01 Jan 2008-Lithos
TL;DR: Two geochemical proxies are particularly important for the identification and classification of oceanic basalts: the Th-Nb proxy for crustal input and hence for demonstrating an oceanic, non-subduction setting; and the Ti-Yb proxy, for melting depth and hence indicating mantle temperature and thickness of the conductive lithosphere as mentioned in this paper.

2,487 citations

Journal ArticleDOI
06 May 2005-Science
TL;DR: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years, and shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.
Abstract: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years. Although the record broadly follows summer insolation, it is punctuated by eight weak monsoon events lasting approximately 1 to 5 centuries. One correlates with the "8200-year" event, another with the collapse of the Chinese Neolithic culture, and most with North Atlantic ice-rafting events. Cross-correlation of the decadal- to centennial-scale monsoon record with the atmospheric carbon-14 record shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.

2,139 citations

Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is found that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v.
Abstract: Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.

1,977 citations

Journal ArticleDOI
TL;DR: In this paper, a new common stratigraphic timescale for the North Greenland Ice Core Project (NGRIP) and GRIP ice cores is presented, which covers the period 7.9-14.8 kyr before present and includes the Bolling, Allerod, Younger Dryas, and early Holocene periods.
Abstract: [1] We present a new common stratigraphic timescale for the North Greenland Ice Core Project (NGRIP) and GRIP ice cores. The timescale covers the period 7.9–14.8 kyr before present and includes the Bolling, Allerod, Younger Dryas, and early Holocene periods. We use a combination of new and previously published data, the most prominent being new high-resolution Continuous Flow Analysis (CFA) impurity records from the NGRIP ice core. Several investigators have identified and counted annual layers using a multiparameter approach, and the maximum counting error is estimated to be up to 2% in the Holocene part and about 3% for the older parts. These counting error estimates reflect the number of annual layers that were hard to interpret, but not a possible bias in the set of rules used for annual layer identification. As the GRIP and NGRIP ice cores are not optimal for annual layer counting in the middle and late Holocene, the timescale is tied to a prominent volcanic event inside the 8.2 kyr cold event, recently dated in the DYE-3 ice core to 8236 years before A. D. 2000 (b2k) with a maximum counting error of 47 years. The new timescale dates the Younger Dryas-Preboreal transition to 11,703 b2k, which is 100–150 years older than according to the present GRIP and NGRIP timescales. The age of the transition matches the GISP2 timescale within a few years, but viewed over the entire 7.9–14.8 kyr section, there are significant differences between the new timescale and the GISP2 timescale. The transition from the glacial into the Bolling interstadial is dated to 14,692 b2k. The presented timescale is a part of a new Greenland ice core chronology common to the DYE-3, GRIP, and NGRIP ice cores, named the Greenland Ice Core Chronology 2005 (GICC05). The annual layer thicknesses are observed to be log-normally distributed with good approximation, and compared to the early Holocene, the mean accumulation rates in the Younger Dryas and Bolling periods are found to be 47 ± 2% and 88 ± 2%, respectively.

1,789 citations