scispace - formally typeset
Search or ask a question
Author

Karl J. Jepsen

Bio: Karl J. Jepsen is an academic researcher from University of Michigan. The author has contributed to research in topics: Cortical bone & Bone density. The author has an hindex of 50, co-authored 146 publications receiving 11696 citations. Previous affiliations of Karl J. Jepsen include Icahn School of Medicine at Mount Sinai & City University of New York.


Papers
More filters
Journal ArticleDOI
TL;DR: Standard nomenclature, outlined in this article, should be followed for reporting of results of µCT‐derived bone morphometry and density measurements.
Abstract: Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of microCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present microCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting microCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results.

3,298 citations

Journal ArticleDOI
Gary A. Churchill, David C. Airey1, Hooman Allayee2, Joe M. Angel3, Alan D. Attie4, Jackson Beatty5, Willam D. Beavis6, John K. Belknap7, Beth Bennett8, Wade H. Berrettini9, André Bleich10, Molly A. Bogue, Karl W. Broman11, Kari J. Buck12, Edward S. Buckler13, Margit Burmeister14, Elissa J. Chesler15, James M. Cheverud16, Steven J. Clapcote17, Melloni N. Cook18, Roger D. Cox19, John C. Crabbe12, Wim E. Crusio20, Ariel Darvasi21, Christian F. Deschepper22, Rebecca W. Doerge23, Charles R. Farber24, Jiri Forejt25, Daniel Gaile26, Steven J. Garlow27, Hartmut Geiger28, Howard K. Gershenfeld29, Terry Gordon30, Jing Gu15, Weikuan Gu15, Gerald de Haan31, Nancy L. Hayes32, Craig Heller33, Heinz Himmelbauer34, Robert Hitzemann12, Kent W. Hunter35, Hui-Chen Hsu36, Fuad A. Iraqi37, Boris Ivandic38, Howard J. Jacob39, Ritsert C. Jansen31, Karl J. Jepsen40, Dabney K. Johnson41, Thomas E. Johnson8, Gerd Kempermann42, Christina Kendziorski4, Malak Kotb15, R. Frank Kooy43, Bastien Llamas22, Frank Lammert44, J. M. Lassalle45, Pedro R. Lowenstein5, Lu Lu15, Aldons J. Lusis5, Kenneth F. Manly15, Ralph S. Marcucio46, Doug Matthews18, Juan F. Medrano24, Darla R. Miller41, Guy Mittleman18, Beverly A. Mock35, Jeffrey S. Mogil47, Xavier Montagutelli48, Grant Morahan49, David G. Morris50, Richard Mott51, Joseph H. Nadeau52, Hiroki Nagase53, Richard S. Nowakowski32, Bruce F. O'Hara54, Alexander V. Osadchuk, Grier P. Page36, Beverly Paigen, Kenneth Paigen, Abraham A. Palmer, Huei Ju Pan, Leena Peltonen-Palotie55, Leena Peltonen-Palotie5, Jeremy L. Peirce15, Daniel Pomp56, Michal Pravenec25, Daniel R. Prows28, Zonghua Qi1, Roger H. Reeves11, John C. Roder17, Glenn D. Rosen57, Eric E. Schadt58, Leonard C. Schalkwyk59, Ze'ev Seltzer17, Kazuhiro Shimomura60, Siming Shou61, Mikko J. Sillanpää55, Linda D. Siracusa62, Hans-Willem Snoeck40, Jimmy L. Spearow24, Karen L. Svenson, Lisa M. Tarantino63, David W. Threadgill64, Linda A. Toth65, William Valdar51, Fernando Pardo-Manuel de Villena64, Craig H Warden24, Steve Whatley59, Robert W. Williams15, Tom Wiltshire63, Nengjun Yi36, Dabao Zhang66, Min Zhang13, Fei Zou64 
Vanderbilt University1, University of Southern California2, University of Texas MD Anderson Cancer Center3, University of Wisconsin-Madison4, University of California, Los Angeles5, National Center for Genome Resources6, Portland VA Medical Center7, University of Colorado Boulder8, University of Pennsylvania9, Hannover Medical School10, Johns Hopkins University11, Oregon Health & Science University12, Cornell University13, University of Michigan14, University of Tennessee Health Science Center15, Washington University in St. Louis16, University of Toronto17, University of Memphis18, Medical Research Council19, University of Massachusetts Medical School20, Hebrew University of Jerusalem21, Université de Montréal22, Purdue University23, University of California, Davis24, Academy of Sciences of the Czech Republic25, University at Buffalo26, Emory University27, University of Cincinnati28, University of Texas Southwestern Medical Center29, New York University30, University of Groningen31, Rutgers University32, Stanford University33, Max Planck Society34, National Institutes of Health35, University of Alabama at Birmingham36, International Livestock Research Institute37, Heidelberg University38, Medical College of Wisconsin39, Icahn School of Medicine at Mount Sinai40, Oak Ridge National Laboratory41, Charité42, University of Antwerp43, RWTH Aachen University44, Paul Sabatier University45, University of California, San Francisco46, McGill University47, Pasteur Institute48, University of Western Australia49, Yale University50, University of Oxford51, Case Western Reserve University52, Roswell Park Cancer Institute53, University of Kentucky54, University of Helsinki55, University of Nebraska–Lincoln56, Harvard University57, Merck & Co.58, King's College London59, Northwestern University60, Shriners Hospitals for Children61, Thomas Jefferson University62, Novartis63, University of North Carolina at Chapel Hill64, Southern Illinois University Carbondale65, University of Rochester66
TL;DR: The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way the authors approach human health and disease.
Abstract: The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.

1,040 citations

Journal ArticleDOI
TL;DR: A crucial role is established for lumican in the regulation of collagen assembly into fibrils in various connective tissues and the development of a highly organized collagenous matrix and corneal transparency.
Abstract: Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defect in the homozygous mutants is deregulated growth of collagen fibrils with a significant proportion of abnormally thick collagen fibrils in the skin and cornea as indicated by transmission electron microscopy. A highly organized and regularly spaced collagen fibril matrix typical of the normal cornea is also missing in these mutant mice. This study establishes a crucial role for lumican in the regulation of collagen assembly into fibrils in various connective tissues. Most importantly, these results provide a definitive link between a necessity for lumican in the development of a highly organized collagenous matrix and corneal transparency.

698 citations

Journal ArticleDOI
TL;DR: It is indicated that hydrostatic pressure enhances the cartilaginous matrix formation of mesenchymal progenitor cells differentiated in vitro, and suggests that mechanical forces may play an important role in cartilage repair and regeneration in vivo.

348 citations

Journal ArticleDOI
TL;DR: It is shown that collagen fibrils in tendons from mice deficient in biglycan and/or fibromodulin are structurally and mechanically altered resulting in unstable joints and mutations in SLRPs may predispose to osteoarthritis.
Abstract: Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization, a process essential in development, tissue repair, and metastasis. In vivo interactions of biglycan and fibromodulin, two SLRPs highly expressed in tendons and bones, were investigated by generating biglycan/fibromodulin double-deficient mice. Here we show that collagen fibrils in tendons from mice deficient in biglycan and/or fibromodulin are structurally and mechanically altered resulting in unstable joints. As a result, the mice develop successively and progressively 1) gait impairment, 2) ectopic tendon ossification, and 3) severe premature osteoarthritis. Forced use of the joints increases ectopic ossification and osteoarthritis in the double-deficient mice, further indicating that structurally weak tendons cause the phenotype. The study shows that mutations in SLRPs may predispose to osteoarthritis and offers a valuable and unique animal model for spontaneous osteoarthritis characterized by early onset and a rapid progression of the disease.

332 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure and allows for linkage disequilibrium statistics to be calculated and visualized graphically.
Abstract: Summary: Association analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure. For result interpretation, the program allows for linkage disequilibrium statistics to be calculated and visualized graphically. Database browsing and data importation is facilitated by integrated middleware. Other features include analyzing insertions/deletions, calculating diversity statistics, integration of phenotypic and genotypic data, imputing missing data and calculating principal components. Availability: The TASSEL executable, user manual, example data sets and tutorial document are freely available at http://www. maizegenetics.net/tassel. The source code for TASSEL can be found at http://sourceforge.net/projects/tassel.

5,460 citations

Journal ArticleDOI
TL;DR: Standard nomenclature, outlined in this article, should be followed for reporting of results of µCT‐derived bone morphometry and density measurements.
Abstract: Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of microCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present microCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting microCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results.

3,298 citations

Journal ArticleDOI
TL;DR: It is demonstrated that OPG is a critical regulator of postnatal bone mass and regulation of OPG, its signaling pathway, or its ligand(s) may play a role in the long observed association between osteoporosis and vascular calcification.
Abstract: Osteoprotegerin (OPG) is a secreted protein that inhibits osteoclast formation. In this study the physiological role of OPG is investigated by generating OPG-deficient mice. Adolescent and adult OPG-/- mice exhibit a decrease in total bone density characterized by severe trabecular and cortical bone porosity, marked thinning of the parietal bones of the skull, and a high incidence of fractures. These findings demonstrate that OPG is a critical regulator of postnatal bone mass. Unexpectedly, OPG-deficient mice also exhibit medial calcification of the aorta and renal arteries, suggesting that regulation of OPG, its signaling pathway, or its ligand(s) may play a role in the long observed association between osteoporosis and vascular calcification.

2,444 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles involved in designing hierarchical biological materials, such as cellular and composite architectures, adapative growth and as well as remodeling, are discussed, and examples that are found to utilize these strategies include wood, bone, tendon, and glass sponges.

2,274 citations

Journal ArticleDOI
TL;DR: Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment.
Abstract: The last decade has provided a virtual explosion of data on the molecular biology and function of osteocytes. Far from being the “passive placeholder in bone,” this cell has been found to have numerous functions, such as acting as an orchestrator of bone remodeling through regulation of both osteoclast and osteoblast activity and also functioning as an endocrine cell. The osteocyte is a source of soluble factors not only to target cells on the bone surface but also to target distant organs, such as kidney, muscle, and other tissues. This cell plays a role in both phosphate metabolism and calcium availability and can remodel its perilacunar matrix. Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment. As we age, these cells die, leaving behind empty lacunae that frequently micropetrose. In aged bone such as osteonecrotic bone, empty lacunae are associated with reduced remodeling. Inflammatory factors such as tumor necrosis factor and glucocorticoids used to treat inflammatory disease induce osteocyte cell death, but by different mechanisms with potentially different outcomes. Therefore, healthy, viable osteocytes are necessary for proper functionality of bone and other organs. © 2011 American Society for Bone and Mineral Research.

1,883 citations