Author

# Karl Terzaghi

Bio: Karl Terzaghi is an academic researcher from Harvard University. The author has contributed to research in topics: Soil mechanics & Lateral earth pressure. The author has an hindex of 16, co-authored 45 publications receiving 12475 citations.

##### Papers

More filters

•

01 Jan 1948

TL;DR: In this article, the authors present a survey of the properties of soils and their properties in terms of Hydraulics of Soils, Hydraulic and Mechanical Properties of Soil Exploration Hydraulic, Mechanical, and Hydraulic properties of soil.

Abstract: PHYSICAL PROPERTIES OF SOILS Index Properties of Soils Soil Exploration Hydraulic and Mechanical Properties of Soils THEORETICAL SOIL MECHANICS Hydraulics of Soils Plastic Equilibrium in Soils Settlement and Contact Pressure PROBLEMS OF DESIGN AND CONSTRUCTION Ground Improvement Earth Pressure and Stability of Slopes Foundations Settlement Due to Extraneous Causes Dams and Dam Foundations References Indexes

5,136 citations

##### Cited by

More filters

••

TL;DR: In this article, the number of physical constants necessary to determine the properties of the soil is derived along with the general equations for the prediction of settlements and stresses in three-dimensional problems.

Abstract: The settlement of soils under load is caused by a phenomenon called consolidation, whose mechanism is known to be in many cases identical with the process of squeezing water out of an elasticporous medium. The mathematical physical consequences of this viewpoint are established in the present paper. The number of physical constants necessary to determine the properties of the soil is derived along with the general equations for the prediction of settlements and stresses in three‐dimensional problems. Simple applications are treated as examples. The operational calculus is shown to be a powerful method of solution of consolidation problems.

8,253 citations

••

TL;DR: This paper summarises the interpretation of the Hoek-Brown failure criterion which has been found to work best in dealing with practical engineering problems.

2,813 citations

••

01 Dec 1974TL;DR: In this article, an analysis of some 200 tunnel case records has revealed a useful correlation between the amount and type of permanent support and the rock mass quality, with respect to tunnel stability.

Abstract: An analysis of some 200 tunnel case records has revealed a useful correlation between the amount and type of permanent support and the rock mass qualityQ, with respect to tunnel stability. The numerical value ofQ ranges from 0.001 (for exceptionally poor quality squeezing-ground) up to 1000 (for exceptionally good quality rock which is practically unjointed). The rock mass qualityQ is a function of six parameters, each of which has a rating of importance, which can be estimated from surface mapping and can be updated during subsequent excavation. The six parameters are as follows; theRQD index, the number of joint sets, the roughness of the weakest joints, the degree of alteration or filling along the weakest joints, and two further parameters which account for the rock load and water inflow. In combination these parameters represent the rock block-size, the interblock shear strength, and the active stress. The proposed classification is illustrated by means of field examples and selected case records. Detailed analysis of the rock mass quality and corresponding support practice has shown that suitable permanent support can be estimated for the whole spectrum of rock qualities. This estimate is based on the rock mass quality Q, the support pressure, and the dimensions and purpose of the excavation. The support pressure appears to be a function ofQ, the joint roughness, and the number of joint sets. The latter two determine the dilatency and the degree of freedom of the rock mass. Detailed recommendations for support measures include various combinations of shotcrete, bolting, and cast concrete arches together with the appropriate bolt spacings and lengths, and the requisite thickness of shotcrete or concrete. The boundary between self supporting tunnels and those requiring some form of permanent support can be determined from the rock mass qualityQ.

2,474 citations

••

TL;DR: The modified Varnes classification of landslides has 32 landslide types, each of which is backed by a formal definition as mentioned in this paper, and complex landslides are not included as a separate category type, but composite types can be constructed by the user of the classification by combining two or more type names.

Abstract: The goal of this article is to revise several aspects of the well-known classification of landslides, developed by Varnes (1978). The primary recommendation is to modify the definition of landslide-forming materials, to provide compatibility with accepted geotechnical and geological terminology of rocks and soils. Other, less important modifications of the classification system are suggested, resulting from recent developments of the landslide science. The modified Varnes classification of landslides has 32 landslide types, each of which is backed by a formal definition. The definitions should facilitate backward compatibility of the system as well as possible translation to other languages. Complex landslides are not included as a separate category type, but composite types can be constructed by the user of the classification by combining two or more type names, if advantageous.

1,973 citations

•

26 Apr 1991TL;DR: In this article, the basic ingredients of a family of simple elastic-plastic models of soil behaviour are described and used in numerical analyses. But the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.

Abstract: Soils can rarely be described as ideally elastic or perfectly plastic and yet simple elastic and plastic models form the basis for the most traditional geotechnical engineering calculations. With the advent of cheap powerful computers the possibility of performing analyses based on more realistic models has become widely available. One of the aims of this book is to describe the basic ingredients of a family of simple elastic-plastic models of soil behaviour and to demonstrate how such models can be used in numerical analyses. Such numerical analyses are often regarded as mysterious black boxes but a proper appreciation of their worth requires an understanding of the numerical models on which they are based. Though the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.

1,671 citations