scispace - formally typeset
Search or ask a question
Author

Karoly Osvay

Bio: Karoly Osvay is an academic researcher from University of Szeged. The author has contributed to research in topics: Laser & Ultrashort pulse. The author has an hindex of 26, co-authored 204 publications receiving 2765 citations. Previous affiliations of Karoly Osvay include Centre national de la recherche scientifique & Lund University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of spectral phase, energy extraction, signal pulse chirp, and pump pulse nonuniformity are analyzed, and optimization techniques are proposed and discussed.
Abstract: Optical parametric amplification can give particularly high values for gain, gain bandwidth, energy, efficiency, and wave-front quality. In combination with chirped pulse amplification, in a technique we call optical parametric chirped pulse amplification, it offers the prospect of generating peak powers up to 100 PW and intensities greater than 1024 W/cm2 with existing technology. Here we study the technique in detail using both analytical and computational techniques, and the limit of validity of the analytical approach is identified. The effects of spectral phase, energy extraction, signal pulse chirp, and pump pulse nonuniformity are analyzed, and optimization techniques are proposed and discussed.

244 citations

Journal ArticleDOI
TL;DR: Some spectral narrowing during amplification was shown to be compatible with the time-varying profile of the pump beam and consistent with the measured recompressed pulse durations before and after amplification, respectively.
Abstract: Optical parametric chirped pulse amplifiers offer exciting prospects for generating new extremes in power, intensity, and pulse duration. An experiment is described that was used to investigate the operation of this scheme up to energies approaching a joule, as a step toward its implementation at the petawatt level. The results demonstrate an energy gain of 1010 with an energy extraction efficiency of 20% and close to diffraction-limited performance. Some spectral narrowing during amplification was shown to be compatible with the time-varying profile of the pump beam and consistent with the measured recompressed pulse durations of 260 and 300 fs before and after amplification, respectively.

165 citations

Journal ArticleDOI
TL;DR: Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas, which provides an accuracy between 4.1x10(-9) (Ne) and 4.3x10 (-7) (Xe) for theRefractive indices, from UV to near IR.
Abstract: Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N2, Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5 m long tube between 0.05 mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800 nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz-Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1×10−9 (Ne) and 4.3×10−7 (Xe) for the refractive indices, from UV to near IR.

153 citations

Journal ArticleDOI
TL;DR: The frequency-dependent group delay of dielectric mirrors was measured by spectrally resolved white-light interferometry and thin-film Gires-Tournois interferometers designed for dispersion control in a femtosecond Ti:sapphire laser oscillator-amplifier system were tested.
Abstract: The frequency-dependent group delay of dielectric mirrors was measured by spectrally resolved white-light interferometry. Chirped mirrors and thin-film Gires-Tournois interferometers designed for dispersion control in a femtosecond Ti:sapphire laser oscillator-amplifier system were tested with a group-delay resolution of +/-0.2 fs and a spectral resolution of ~1 nm over the spectral range of 670-870 nm.

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility for time-resolved investigations with unprecedented levels of high quality characteristics.
Abstract: This review presents the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility. ELI-ALPS will offer to the international scientific community ultrashort pulses in the femtosecond and attosecond domain for time-resolved investigations with unprecedented levels of high quality characteristics. The laser sources and the attosecond beamlines available at the facility will make attosecond technology accessible for scientists lacking access to these novel tools. Time-resolved investigation of systems of increasing complexity is envisaged using the end stations that will be provided at the facility.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives are given in this article. But the main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.
Abstract: Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the applicative potential and in the perspective to investigate novel regimes as available laser intensities will be increasing. Experiments have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance, and low emittance. An overview is given of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. The main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.

1,221 citations

Book
01 Jan 1960

1,106 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the recent progress in the development of ultrafast optical parametric amplifiers, giving the basic design principles for different frequency ranges and in addition presenting some advanced designs for the generation of ultrabroadband, few-optical-cycle pulses.
Abstract: Over the last decade there have been spectacular developments in ultrafast laser technology, due to the introduction of solid state active materials and of new mode-locking and amplification techniques. These advances, together with the discovery of new nonlinear optical crystals, have fostered the introduction of ultrafast optical parametric amplifiers as a practical source of femtosecond pulses tunable across the visible and infrared spectral ranges. This article summarizes the recent progress in the development of ultrafast optical parametric amplifiers, giving the basic design principles for different frequency ranges and in addition presenting some advanced designs for the generation of ultrabroadband, few-optical-cycle pulses. Finally, we also briefly discuss the possibility of applying parametric amplification schemes to large-scale, petawatt-level systems.

914 citations