scispace - formally typeset
Search or ask a question
Author

Karsten Michael

Bio: Karsten Michael is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Aquifer & Groundwater. The author has an hindex of 17, co-authored 52 publications receiving 1165 citations. Previous affiliations of Karsten Michael include Cooperative Research Centre & University of Alberta.


Papers
More filters
Journal ArticleDOI
TL;DR: The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snohvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible.

528 citations

Journal ArticleDOI
TL;DR: The coalbed methane potential and producibility of any coal-bearing strata are strongly affected by the hydrogeological regime of formation waters and by coal permeability, which in turn depends on the effective stress regime of the coals as mentioned in this paper.
Abstract: The coalbed methane potential and producibility of any coal-bearing strata are strongly affected by the hydrogeological regime of formation waters and by coal permeability, which in turn depends on the effective stress regime of the coals. Peat that accumulated in the Alberta basin during the Late Cretaceous and early Tertiary led to the formation of coal deposits that may contain significant coalbed methane resources. The flow of formation waters plays an important role in the maintenance and producibility of this resource. The present-day flow is driven by gravity (topography) and erosional rebound and is controlled by rock permeability and the presence of gas-saturated sandstones. The estimated gas in place in the Tertiary–Upper Cretaceous coals decreases significantly with stratigraphic age, ranging between less than 2 bcf/mi2 in the lower coal zones and 12 bcf/mi2 in the uppermost coals. The gas content, especially of the deeper coals, is lower than would be expected for the corresponding coal rank and burial depth, most likely because the underpressuring has caused the release of gas from the coals and accumulation in adjacent sands. The shallow coals, although of low rank, may contain important amounts of late-stage biogenic methane. The salinity of formation water in shallow coal seams, where the flow is driven by topography, is low, generally less than 1500 mg/L, although in places, it reaches 3000–5000 mg/L. The salinity of formation water in the deeper, underpressured strata in the west-central part of the basin is significantly higher, reaching 18,000 mg/L. This affects treatment and/or disposal strategies with regard to the water produced concurrent to coalbed methane.The producibility of this resource depends on coal permeability, which decreases west-southwestward with increasing burial depth, from the order of several darcys in the shallow zones to millidarcys in the deep zones. The minimum effective stress, which affects coal permeability by closing fractures, increases west-southwestward from zero at the erosional edge of these strata to approximately 20 MPa near the Rocky Mountain deformation front. Fractures, including those in coal seams, will generally be vertical and will propagate on a southwest-northeast axis along the direction of the maximum horizontal stress, in a direction generally perpendicular to the Rocky Mountain deformation front.Considering the hydrogeological and stress regimes in conjunction with estimations of the gas content in coals, the region with probably good coalbed methane potential and producibility are the Ardley coal zone in the Scollard Formation and maybe, to a lesser extent, the coal zones of the stratigraphically deeper Edmonton and Belly River groups along their respective subcrop in central and southern Alberta. The deep Edmonton and Belly River strata in western and central Alberta have most likely a reduced coalbed methane potential as a result of lower gas content and of low permeability. These regional considerations need to be applied against local studies of coal thickness, rank, permeability, and gas content to identify the best targets for coalbed methane exploration and production.

69 citations

Journal ArticleDOI
TL;DR: A review of biological monitoring for CCS shows a number of techniques such as plant surveys, bacterial counts and DNA fingerprinting that have been applied to natural analogues or shallow injection sites as mentioned in this paper.

65 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed consistent methodologies for the classification and determination of CO2 storage capacity and towards comprehensive guidelines regarding site selection, site characterisation, risk assessment and monitoring and plans.

57 citations

Journal ArticleDOI
TL;DR: The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka) and existing commercial operations (Sleipner, Snohvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

Journal ArticleDOI
TL;DR: In this article, the importance of accounting for CO2 trapping in the relative permeability model for predicting the distribution and mobility of CO2 in the formation has been evaluated, and it is shown that the mechanism of capillary trapping can be exploited to improve the overall effectiveness of the injection project.
Abstract: [1] Relative permeabilities are the key descriptors in classical formulations of multiphase flow in porous media. Experimental evidence and an analysis of pore-scale physics demonstrate conclusively that relative permeabilities are not single functions of fluid saturations and that they display strong hysteresis effects. In this paper, we evaluate the relevance of relative permeability hysteresis when modeling geological CO2 sequestration processes. Here we concentrate on CO2 injection in saline aquifers. In this setting the CO2 is the nonwetting phase, and capillary trapping of the CO2 is an essential mechanism after the injection phase during the lateral and upward migration of the CO2 plume. We demonstrate the importance of accounting for CO2 trapping in the relative permeability model for predicting the distribution and mobility of CO2 in the formation. We conclude that modeling of relative permeability hysteresis is required to assess accurately the amount of CO2 that is immobilized by capillary trapping and therefore is not available to leak. We also demonstrate how the mechanism of capillary trapping can be exploited (e.g., by controlling the injection rate or alternating water and CO2 injection) to improve the overall effectiveness of the injection project.

771 citations

Journal ArticleDOI
TL;DR: A review of the state of the art in dolomite research can be found in this article, where the authors highlight the major advances and controversies of the last 20-25 years.
Abstract: Abstract Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20–25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and — in the case of advanced burial — formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced (‘squeegee-type’) flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was ‘pumped’ through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50–80 °C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research.

645 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent developments on the carbon capture and storage (CCS) methodologies from 2006 until now, focusing on the basic findings achieved in CCS operational projects.
Abstract: The Intergovernmental Panel on Climate Change assumes the warming of the climate system, associating the increase of global average temperature to the observed increase of the anthropogenic greenhouse gas (GHG) concentrations in the atmosphere. Carbon dioxide (CO 2 ) is considered the most important GHG, due to the dependence of world economies on fossil fuels, since their combustion processes are the most important sources of this gas. CO 2 concentrations are increasing in the last decades mainly due to the increase of anthropogenic emissions. The processes involving CO 2 capture and storage is gaining attention on the scientific community as an alternative for decreasing CO 2 emission, reducing its concentration in ambient air. However, several technological, economical and environmental issues as well as safety problems remain to be solved, such as the following needs: increase of CO 2 capture efficiency, reduction of process costs, and verification of environmental sustainability of CO 2 storage. This paper aims to review the recent developments (from 2006 until now) on the carbon capture and storage (CCS) methodologies. Special attention was focused on the basic findings achieved in CCS operational projects.

608 citations

Journal ArticleDOI
TL;DR: The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snohvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible.

528 citations