scispace - formally typeset
Search or ask a question
Author

Karthik Chandrasekaran

Bio: Karthik Chandrasekaran is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: microRNA & Ternary operation. The author has an hindex of 10, co-authored 28 publications receiving 334 citations. Previous affiliations of Karthik Chandrasekaran include University of Vienna & RMK Engineering College.

Papers
More filters
Journal ArticleDOI
TL;DR: Low expression of miR-214 concurrent with elevated levels of HMGA1 may contribute to cervical and colorectal cancer progression and opens up avenues for novel therapeutic strategies for these two cancers.
Abstract: MicroRNA-214 (miR-214) has been shown to act as a tumour suppressor in human cervical and colorectal cancer cells. The aim of this study was to experimentally validate high mobility group AT-hook 1 as a novel target for miR-214-mediated suppression of growth and motility. HMGA1 and miR-214 expression levels were estimated in cervical and colorectal clinical specimens using qPCR. HMGA1 3′ untranslated region luciferase assays were performed to validate HMGA1 as a target of miR-214. Effect of altering the expression of miR-214 or HMGA1 on proliferation, migration and invasion of human cervical and colorectal cancer cells was investigated. miR-214 expression was poor while that of HMGA1 was high in cervical and colorectal cancer tissues. miR-214-re-expression or HMGA1 downregulation inhibited proliferation, migration and invasion of cancer cells while miR-214 inhibition had opposite effects. miR-214 was demonstrated to bind to the wild-type 3′ untranslated region of HMGA1 but not with its mutant. Low expression of miR-214 concurrent with elevated levels of HMGA1 may contribute to cervical and colorectal cancer progression. miR-214-mediated regulation of HMGA1 is a novel mechanism for its tumour-suppressive actions in human cervical and colorectal cancer cells and opens up avenues for novel therapeutic strategies for these two cancers.

55 citations

Journal ArticleDOI
TL;DR: In this article, the ternary Al y Si 9−y Ni 13±x (τ 4 ) and binary θ-Ni 2 Si as one single solid solution phase were investigated by a combination of differential thermal analysis (DTA), powder X-ray diffraction (XRD), metallography and electron probe microanalysis (EPMA).

48 citations

Journal ArticleDOI
TL;DR: It is found that microRNA-145 binds to the wild-type 3’UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP2 expression, and this provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.
Abstract: Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena. The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3’ untranslated region (3’UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR. We found that miR-145 binds to the wild-type 3’UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database. Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to cervical cancer development. MiR-145-mediated regulation of SIP1 provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.

44 citations

Journal ArticleDOI
TL;DR: This study has shown that decreasing the tibial slope >5° compared to pre-operative value has functionally favourable effect on the reconstructed ACL graft and outcome.
Abstract: Background Open-wedge high tibial osteotomy is considered to be an effective treatment for medial compartmental osteoarthritis. It is generally admitted that tibial slope increases after open-wedge high tibial osteotomy and decreases after closing-wedge high tibial osteotomy. Young patients with anterior cruciate ligament (ACL) deficiency along with medial compartment osteoarthritis need a combined procedure of ACL reconstruction along with high tibial osteotomy to regain physiological knee kinematics and to avoid chondral damage.

41 citations

Journal ArticleDOI
TL;DR: The current findings would help in not only understanding the complexity of miRNA-target regulatory mechanisms but also in designing novel therapeutic interventions in CaCx and CRC.
Abstract: High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein known to be highly expressed in human cervical (CaCx) and colorectal (CRC) cancers, and sustained high levels of HMGB1 contribute to tumourigenesis and metastasis. HMGB1-targeted cancer therapy is of recent interest, and there are not many studies on miRNA-mediated HMGB1 regulation in these cancers. Since miRNA-based therapeutics for cancer is gaining importance in recent years, it was of interest to predict miRNAs targeting HMGB1. Based on the identification of a potential miR-34a response element in HMGB1-3' untranslated region (3'UTR) and an inverse correlation between HMGB1 and miR-34a expression levels in CaCx and CRC tissues, from a subset of the local population as well as a large sampling from TCGA database, experiments were performed to validate HMGB1 as a direct target of miR-34a in CaCx and CRC cells. Ectopic expression of miR-34a decreased the wild-type HMGB1-3'UTR luciferase activity but not that of its mutant in 3'UTR luciferase assays. While forced expression of miR-34a in CaCx and CRC cells inhibited HMGB1 mRNA and protein levels, proliferation, migration and invasion, inhibition of endogenous miR-34a enhanced these tumourigenic properties. siRNA-mediated HMGB1 suppression imitated miR-34a expression in reducing proliferation and metastasis-related events. Combined with the disparity in expression of miR-34a and HMGB1 in clinical specimens, the current findings would help in not only understanding the complexity of miRNA-target regulatory mechanisms but also in designing novel therapeutic interventions in CaCx and CRC.

34 citations


Cited by
More filters
Journal Article

738 citations

Journal ArticleDOI
09 Jan 2017-Genes
TL;DR: The function of miRNAs in tumorigenesis and development is reviewed, and the latest clinical applications and strategies of therapy targeting miRNA can exert a causal role in different steps of the tumorigenic process are discussed.
Abstract: MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.

151 citations

Journal ArticleDOI
TL;DR: The role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC is discussed, which is a causal factor in the development of CC.
Abstract: Cervical cancer (CC) is the fourth most common cause of cancer death in women. The most important risk factor for the development of CC is cervical infection with human papilloma virus (HPV). Inflammation is a protective strategy that is triggered by the host against pathogens such as viral infections that acts rapidly to activate the innate immune response. Inflammation is beneficial if it is brief and well-controlled, however, if the inflammation is excessive or it becomes of chronic duration, it can produce detrimental effects. HPV proteins are involved, both directly and indirectly, in the development of chronic inflammation, which is a causal factor in the development of CC. However, other factors may also have a potential role in stimulating chronic inflammation. MicroRNAs (miRNAs) (a class of non-coding RNAs) are strong regulators of gene expression. They have emerged as key players in several biological processes, including inflammatory pathways. Abnormal expression of miRNAs may be linked to the induction of inflammation that occurs in CC. Exosomes are a subset of extracellular vesicles shed by almost all types of cells, which can function as cargo transfer vehicles. Exosomes contain proteins and genetic material (including miRNAs) derived from their parent cells and can potentially affect recipient cells. Exosomes have recently been recognized to be involved in inflammatory processes and can also affect the immune response. In this review, we discuss the role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC.

142 citations

Journal ArticleDOI
TL;DR: Various miRNAs are summarized as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Abstract: Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.

141 citations

Journal ArticleDOI
TL;DR: lncRNAs are valuable tools in the search for new targets to selectively eliminate CSCs and improve clinical outcomes and may serve as excellent therapeutic targets because they are stable, easily detectable and expressed in tissue-specific contexts.
Abstract: Tumors contain a functional subpopulation of cells that exhibit stem cell properties. These cells, named cancer stem cells (CSCs), play significant roles in the initiation and progression of cancer. Long non-coding RNAs (lncRNAs) can act at the transcriptional, posttranscriptional and translational level. As such, they may be involved in various biological processes such as DNA damage repair, inflammation, metabolism, cell survival, cell signaling, cell growth and differentiation. Accumulating evidence indicates that lncRNAs are key regulators of the CSC subpopulation, thereby contributing to cancer progression. The aim of this review is to overview current knowledge about the functional role and the mechanisms of action of lncRNAs in the initiation, maintenance and regulation of CSCs derived from different neoplasms. These lncRNAs include CTCF7, ROR, DILC, HOTAIR, H19, HOTTIP, ATB, HIF2PUT, SOX2OT, MALAT-1, CUDR, Lnc34a, Linc00617, DYNC2H1–4, PVT1, SOX4 and ARSR Uc.283-plus. Furthermore, we will illustrate how lncRNAs may regulate asymmetric CSC division and contribute to self-renewal, drug resistance and EMT, thus affecting the metastasis and recurrence of different cancers. In addition, we will highlight the implications of targeting lncRNAs to improve the efficacy of conventional drug therapies and to hamper CSC survival and proliferation. lncRNAs are valuable tools in the search for new targets to selectively eliminate CSCs and improve clinical outcomes. LncRNAs may serve as excellent therapeutic targets because they are stable, easily detectable and expressed in tissue-specific contexts.

133 citations