scispace - formally typeset
Search or ask a question
Author

Karthik Shankar

Bio: Karthik Shankar is an academic researcher from University of Alberta. The author has contributed to research in topics: Nanotube & Thin film. The author has an hindex of 50, co-authored 173 publications receiving 16672 citations. Previous affiliations of Karthik Shankar include National Research Council & Foundation University, Islamabad.


Papers
More filters
Journal ArticleDOI
TL;DR: Voltage-decay measurements indicate that the highly ordered TiO(2) nanotube arrays, in comparison to nanoparticulate systems, have superior electron lifetimes and provide excellent pathways for electron percolation.
Abstract: We describe the use of highly ordered transparent TiO2 nanotube arrays in dye-sensitized solar cells (DSCs). Highly ordered nanotube arrays of 46-nm pore diameter, 17-nm wall thickness, and 360-nm ...

2,142 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication, properties, and solar energy applications of highly ordered TiO 2 nanotube arrays made by anodic oxidation of titanium in fluoride-based electrolytes are reviewed.

1,905 citations

Journal ArticleDOI
TL;DR: This work presents a straightforward low temperature method to prepare single crystal rutile TiO2 nanowire arrays up to 5 microm long on TCO glass via a non-polar solvent/hydrophilic substrate interfacial reaction under mild hydrothermal conditions.
Abstract: Single-crystal one-dimensional (1D) semiconductor architectures are important in materials-based applications requiring a large surface area, morphological control, and superior charge transport. Titania has widespread utility in applications including photocatalysis, photochromism, photovoltaics, and gas sensors. While considerable efforts have focused on the preparation of 1D TiO2, no methods have been available to grow crystalline nanowire arrays directly onto transparent conducting oxide (TCO) substrates, greatly limiting the performance of TiO2 photoelectrochemical devices. Herein, we present a straightforward low temperature method to prepare single crystal rutile TiO2 nanowire arrays up to 5 microm long on TCO glass via a non-polar solvent/hydrophilic substrate interfacial reaction under mild hydrothermal conditions. The as-prepared densely packed nanowires grow vertically oriented from the TCO glass substrate along the (110) crystal plane with a preferred (001) orientation. In a dye sensitized solar cell, N719 dye, using TiO2 nanowire arrays 2-3 microm long we achieve an AM 1.5 photoconversion efficiency of 5.02%.

1,146 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the wall thickness and length of the nanotubes can be controlled via anodization bath temperature and this hydrogen generation rate is the highest reported for a titania-based photoelectrochemical cell.
Abstract: In this study highly ordered titania nanotube arrays of variable wall thickness are used to photocleave water under ultraviolet irradiation. We demonstrate that the wall thickness and length of the nanotubes can be controlled via anodization bath temperature. We find that the nanotube wall thickness is a key parameter influencing the magnitude of the photoanodic response and the overall efficiency of the water-splitting reaction. For 22 nm inner pore diameter nanotube arrays, those fabricated in a 5 °C anodization bath, 224 nm length and 34 nm wall thickness produced a photoanodic response that was thrice that of a nanotube array fabricated in a 50 °C anodization bath, 120 nm length and 9 nm wall-thickness. At high anodic polarization, above 1 V, the quantum efficiency under 337 nm illumination was greater than 90%. For the 5 °C anodization bath samples (22 nm pore-diameter, 34 nm wall thickness), upon 320−400 nm illumination at an intensity of 100 mW/cm2, hydrogen gas was generated at the power−time norm...

1,098 citations

Journal ArticleDOI
TL;DR: In this article, the fabrication of self-aligned highly ordered TiO2 nanotube arrays by potentiostatic anodization of Ti foil having lengths up to 134 μm is described.
Abstract: Described is the fabrication of self-aligned highly ordered TiO2 nanotube arrays by potentiostatic anodization of Ti foil having lengths up to 134 μm, representing well over an order of magnitude i...

845 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations