scispace - formally typeset
Search or ask a question
Author

Kasper Hald

Other affiliations: Aarhus University
Bio: Kasper Hald is an academic researcher from Danske Bank. The author has contributed to research in topics: Coupled cluster & Triplet state. The author has an hindex of 14, co-authored 21 publications receiving 2524 citations. Previous affiliations of Kasper Hald include Aarhus University.

Papers
More filters
Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: In this paper, the triplet and triplet vertical excitation energies of trans-azobenzene were investigated using an explicitly spin coupled basis and the resolution of the identity approximation for two-electron integrals.
Abstract: Triplet excitation energies within the approximate coupled cluster singles and doubles model CC2 have been implemented using an explicitly spin coupled basis and the resolution of the identity approximation for two-electron integrals. This approach reduces substantially the requirements for CPU time, disk space and memory, and extends the applicability of CC2 for triplet excited states to molecules that could not be studied before with this method. We report an application to the lowest singlet and triplet vertical excitation energies of trans-azobenzene. An accurate ab initio geometry optimized at the MP2/cc-pVTZ level is presented, and CC2 calculations in the aug-cc-pVTZ basis set with 874 basis functions are combined with coupled cluster singles and doubles (CCSD) calculations in modest basis sets to obtain the best possible estimates for the vertical excitation energies. The results show that recently reported SOPPA calculations are unreliable. Good agreement with experiment is obtained for the lowest excited singlet state S1, but for the lowest triplet state T1 the results indicate a large difference between the vertical excitation energy and the experimentally observed transition.

122 citations

Journal ArticleDOI
TL;DR: In this paper, triplet and singlet excitation energies have been calculated for Ne, H2O, HF, BH, N2 and C2 using the full configuration interaction (FCI) model and the coupled-cluster model hierarchy CCS, CC2, CCSD, CC3, CC4, CC5, CC6, CC7, CC8 and CCSDT.
Abstract: Triplet excitation energies have been calculated for Ne, H2O, HF, BH, N2, and C2 using the full configuration interaction (FCI) model and the coupled-cluster model hierarchy CCS, CC2, CCSD, CC3, and CCSDT, where CCS, CCSD, and CCSDT are the standard coupled-cluster models where singles, doubles and triples are successively added and where CC2 and CC3 are approximations to the CCSD and CCSDT models where approximations are introduced in the highest amplitude equations. Comparing the coupled-cluster excitation energies with the FCI results shows that the excitation energies are improved at each level in the hierarchy up to CC3. The CC3 and CCSDT excitation energies have similar accuracy for the single excitation dominated excitation energies, whereas the double excitation dominated excitation energies are significantly improved also from CC3 to CCSDT. Singlet excitation energies have also been calculated for HF using the coupled-cluster hierarchy up to CCSDT. Triplet and singlet excitation energies with sim...

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the essential aspects of coupled-cluster theory are explained and illustrated with informative numerical results, showing that the theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules.
Abstract: Today, coupled-cluster theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules. Though it was originally proposed for problems in physics, it has seen its greatest development in chemistry, enabling an extensive range of applications to molecular structure, excited states, properties, and all kinds of spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with informative numerical results.

2,667 citations

Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: In this article, a set of 28 medium-sized organic molecules is assembled that cover the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases.
Abstract: A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP26-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

860 citations

Journal ArticleDOI
TL;DR: This review provides a guide to established EOM methods illustrated by examples that demonstrate the types of target states currently accessible by EOM, and touches on some formal aspects of the theory and important current developments.
Abstract: The equation-of-motion coupled-cluster (EOM-CC) approach is a versatile electronic-structure tool that allows one to describe a variety of multiconfigurational wave functions within single-reference formalism. This review provides a guide to established EOM methods illustrated by examples that demonstrate the types of target states currently accessible by EOM. It focuses on applications of EOM-CC to electronically excited and open-shell species. The examples emphasize EOM's advantages for selected situations often perceived as multireference cases [e.g., interacting states of different nature, Jahn-Teller (JT) and pseudo-JT states, dense manifolds of ionized states, diradicals, and triradicals]. I also discuss limitations and caveats and offer practical solutions to some problematic situations. The review also touches on some formal aspects of the theory and important current developments.

856 citations

Journal ArticleDOI
TL;DR: Near-infrared-emissive polymer-carbon nanodots possess two-photon fluorescence; in vivo bioimaging and red-light-emitting diodes based on these PCNDs are demonstrated.
Abstract: Near-infrared-emissive polymer-carbon nanodots (PCNDs) are fabricated by a newly developed facile, high-output strategy. The PCNDs emit at a wavelength of 710 nm with a quantum yield of 26.28%, which is promising for deep biological imaging and luminescent devices. Moreover, the PCNDs possess two-photon fluorescence; in vivo bioimaging and red-light-emitting diodes based on these PCNDs are demonstrated.

620 citations