scispace - formally typeset
Search or ask a question
Author

Katarina Wolf

Bio: Katarina Wolf is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Extracellular matrix & Cell migration. The author has an hindex of 30, co-authored 38 publications receiving 11830 citations. Previous affiliations of Katarina Wolf include Radboud University Nijmegen Medical Centre & University of Würzburg.

Papers
More filters
Journal ArticleDOI
TL;DR: Cancer cells possess a broad spectrum of migration and invasion mechanisms and learning more about the cellular and molecular basis of these different migration/invasion programmes will help to understand how cancer cells disseminate and lead to new treatment strategies.
Abstract: Cancer cells possess a broad spectrum of migration and invasion mechanisms. These include both individual and collective cell-migration strategies. Cancer therapeutics that are designed to target adhesion receptors or proteases have not proven to be effective in slowing tumour progression in clinical trials — this might be due to the fact that cancer cells can modify their migration mechanisms in response to different conditions. Learning more about the cellular and molecular basis of these different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies.

3,064 citations

Journal ArticleDOI
TL;DR: The transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.
Abstract: Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor–based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of β1 integrins and MT1–matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered β1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.

1,444 citations

Journal ArticleDOI
TL;DR: Using a multiparameter tuning model, this work describes how dimension, density, stiffness, and orientation of the extracellular matrix together with cell determinants—including cell–cell and cell–matrix adhesion, cytoskeletal polarity and stiffness, etc.—interdependently control migration mode and efficiency.
Abstract: Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or collectively. Using a multiparameter tuning model, we describe how dimension, density, stiffness, and orientation of the extracellular matrix together with cell determinants-including cell-cell and cell-matrix adhesion, cytoskeletal polarity and stiffness, and pericellular proteolysis-interdependently control migration mode and efficiency. Motile cells integrate variable inputs to adjust interactions among themselves and with the matrix to dictate the migration mode. The tuning model provides a matrix of parameters that control cell movement as an adaptive and interconvertible process with relevance to different physiological and pathological contexts.

1,239 citations

Journal ArticleDOI
TL;DR: The physical limits of cell migration in dense porous environments are dependent upon the available space and the deformability of the nucleus and are modulated by matrix metalloproteinases, integrins and actomyosin function.
Abstract: Cell migration through 3D tissue depends on a physicochemical balance between cell deformability and physical tissue constraints. Migration rates are further governed by the capacity to degrade ECM by proteolytic enzymes, particularly matrix metalloproteinases (MMPs), and integrin- and actomyosin-mediated mechanocoupling. Yet, how these parameters cooperate when space is confined remains unclear. Using MMP-degradable collagen lattices or nondegradable substrates of varying porosity, we quantitatively identify the limits of cell migration by physical arrest. MMP-independent migration declined as linear function of pore size and with deformation of the nucleus, with arrest reached at 10% of the nuclear cross section (tumor cells, 7 µm2; T cells, 4 µm2; neutrophils, 2 µm2). Residual migration under space restriction strongly depended upon MMP-dependent ECM cleavage by enlarging matrix pore diameters, and integrin- and actomyosin-dependent force generation, which jointly propelled the nucleus. The limits of interstitial cell migration thus depend upon scaffold porosity and deformation of the nucleus, with pericellular collagenolysis and mechanocoupling as modulators.

1,140 citations

Journal ArticleDOI
TL;DR: Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference, and invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macrop atterning.
Abstract: Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.

987 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
05 Dec 2003-Science
TL;DR: The mechanisms underlying the major steps of migration and the signaling pathways that regulate them are described, and recent advances investigating the nature of polarity in migrating cells and the pathways that establish it are outlined.
Abstract: Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its component processes. This review describes the mechanisms underlying the major steps of migration and the signaling pathways that regulate them, and outlines recent advances investigating the nature of polarity in migrating cells and the pathways that establish it.

4,839 citations

Journal ArticleDOI
TL;DR: Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Abstract: New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.

4,288 citations

Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner.

4,185 citations

Journal ArticleDOI
17 Nov 2006-Cell
TL;DR: Understanding of the origins and nature of cancer metastasis and the selection of traits that are advantageous to cancer cells is promoted.

3,863 citations