scispace - formally typeset
Search or ask a question
Author

Katarzyna Wiaroslawa Piechowiak

Bio: Katarzyna Wiaroslawa Piechowiak is an academic researcher from Norwegian University of Life Sciences. The author has contributed to research in topics: Peptidoglycan & Penicillin binding proteins. The author has an hindex of 3, co-authored 3 publications receiving 36 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results strongly suggest that class A PBPs are not an intrinsic part of the divisome and elongasome but have important autonomous roles in construction of the fully mature bacterial cell wall.
Abstract: In oval-shaped Streptococcus pneumoniae, septal and longitudinal peptidoglycan syntheses are performed by independent functional complexes: the divisome and the elongasome. Penicillin-binding proteins (PBPs) were long considered the key peptidoglycan-synthesizing enzymes in these complexes. Among these were the bifunctional class A PBPs, which are both glycosyltransferases and transpeptidases, and monofunctional class B PBPs with only transpeptidase activity. Recently, however, it was established that the monofunctional class B PBPs work together with transmembrane glycosyltransferases (FtsW and RodA) from the shape, elongation, division, and sporulation (SEDS) family to make up the core peptidoglycan-synthesizing machineries within the pneumococcal divisome (FtsW/PBP2x) and elongasome (RodA/PBP2b). The function of class A PBPs is therefore now an open question. Here we utilize the peptidoglycan hydrolase CbpD that targets the septum of S. pneumoniae cells to show that class A PBPs have an autonomous role during pneumococcal cell wall synthesis. Using assays to specifically inhibit the function of PBP2x and FtsW, we demonstrate that CbpD attacks nascent peptidoglycan synthesized by the divisome. Notably, class A PBPs could process this nascent peptidoglycan from a CbpD-sensitive to a CbpD-resistant form. The class A PBP-mediated processing was independent of divisome and elongasome activities. Class A PBPs thus constitute an autonomous functional entity which processes recently formed peptidoglycan synthesized by FtsW/PBP2×. Our results support a model in which mature pneumococcal peptidoglycan is synthesized by three functional entities, the divisome, the elongasome, and bifunctional PBPs. The latter modify existing peptidoglycan but are probably not involved in primary peptidoglycan synthesis.

36 citations

Journal ArticleDOI
TL;DR: The role of peptidoglycan glycosyltransferases has been extensively studied in the literature as mentioned in this paper, where the authors discuss recent progress in answering this question and present their own views on the topic.
Abstract: Until recently, class A penicillin-binding proteins (aPBPs) were the only enzymes known to catalyze glycan chain polymerization from lipid II in bacteria. Hence, the discovery of two novel lipid II polymerases, FtsW and RodA, raises new questions and has consequently received a lot of attention from the research community. FtsW and RodA are essential and highly conserved members of the divisome and elongasome, respectively, and work in conjunction with their cognate class B PBPs (bPBPs) to synthesize the division septum and insert new peptidoglycan into the lateral cell wall. The identification of FtsW and RodA as peptidoglycan glycosyltransferases has raised questions regarding the role of aPBPs in peptidoglycan synthesis and fundamentally changed our understanding of the process. Despite their dethronement, aPBPs are essential in most bacteria. So, what is their function? In this review, we discuss recent progress in answering this question and present our own views on the topic.

22 citations

Posted ContentDOI
10 Jun 2019-bioRxiv
TL;DR: The first time a specific function has been identified for class A PBPs in bacterial cell wall synthesis in S. pneumoniae, which constitute an autonomous functional entity which processes or repairs nascent peptidoglycan synthesized by FtsW/PBP2x.
Abstract: In oval shaped Streptococcus pneumoniae, septal and longitudinal peptidoglycan synthesis is performed by independent functional complexes; the divisome and the elongasome. Penicillin binding proteins (PBPs) were long considered as the key peptidoglycan synthesizing enzymes in these complexes. Among these were the bifunctional class A PBPs, which are both glycosyltransferases and transpeptidases, and monofunctional class B PBPs with only transpeptidase activity. Recently, however, it was established that the monofunctional class B PBPs work together with non-PBP glycosyltransferases (FtsW and RodA) to make up the core peptidoglycan synthesizing machineries within the pneumococcal divisome (FtsW/PBP2x) and elongasome (RodA/PBP2b). The function of class A PBPs is therefore now an open question. Here we utilize the peptidoglycan hydrolase CbpD to show that class A PBPs have an autonomous role during cell wall synthesis in S. pneumoniae. Purified CbpD was shown to target the septum of S. pneumoniae cells. Using assays to specifically inhibit PBP2x, we demonstrate that CbpD specifically target nascent peptidoglycan synthesized by the divisome. Notably, class A PBPs could process this nascent peptidoglycan from a CbpD-sensitive to a CbpD-resistant form. The class A PBP mediated processing was independent of divisome and elongasome activities. Class A PBPs thus constitute an autonomous functional entity which processes or repairs nascent peptidoglycan synthesized by FtsW/PBP2x. Our results support a model in which pneumococcal peptidoglycan is made by three functional entities, the divisome, the elongasome and a peptidoglycan-repairing or -remodelling complex consisting of bifunctional PBPs. To our knowledge this is the first time a specific function has been identified for class A PBPs in bacterial cell wall synthesis.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A recent review as discussed by the authors addresses the current breadth of biochemical and microbiological efforts to preserve the future of β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-Lactams, the penicillin-binding proteins.
Abstract: The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.

38 citations

Journal ArticleDOI
TL;DR: The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria and its protective role is in great part provided by its mesh-like character as discussed by the authors.
Abstract: The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.

33 citations

Journal ArticleDOI
TL;DR: It is hypothesize that class A PBP function is essential in walled bacteria unless they have (a) SEDS protein(s) capable of replacing their function.

24 citations

Journal ArticleDOI
Tobias Dörr1
TL;DR: The manifestations, mechanisms, and clinical relevance of tolerance to cell wall–active (CWA) antibiotics are reviewed, and evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure is discussed.
Abstract: Antibiotic tolerance-the ability of bacteria to survive for an extended time in the presence of bactericidal antibiotics-is an understudied contributor to antibiotic treatment failure. Herein, I review the manifestations, mechanisms, and clinical relevance of tolerance to cell wall-active (CWA) antibiotics, one of the most important groups of antibiotics at the forefront of clinical use. I discuss definitions of tolerance and assays for tolerance detection, comprehensively discuss the mechanism of action of β-lactams and other CWA antibiotics, and then provide an overview of how cells mitigate the potentially lethal effects of CWA antibiotic-induced cell damage to become tolerant. Lastly, I discuss evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure.

23 citations

Journal ArticleDOI
TL;DR: The role of peptidoglycan glycosyltransferases has been extensively studied in the literature as mentioned in this paper, where the authors discuss recent progress in answering this question and present their own views on the topic.
Abstract: Until recently, class A penicillin-binding proteins (aPBPs) were the only enzymes known to catalyze glycan chain polymerization from lipid II in bacteria. Hence, the discovery of two novel lipid II polymerases, FtsW and RodA, raises new questions and has consequently received a lot of attention from the research community. FtsW and RodA are essential and highly conserved members of the divisome and elongasome, respectively, and work in conjunction with their cognate class B PBPs (bPBPs) to synthesize the division septum and insert new peptidoglycan into the lateral cell wall. The identification of FtsW and RodA as peptidoglycan glycosyltransferases has raised questions regarding the role of aPBPs in peptidoglycan synthesis and fundamentally changed our understanding of the process. Despite their dethronement, aPBPs are essential in most bacteria. So, what is their function? In this review, we discuss recent progress in answering this question and present our own views on the topic.

22 citations