scispace - formally typeset
Search or ask a question
Author

Kathaleen Golds

Bio: Kathaleen Golds is an academic researcher from Geron Corporation. The author has contributed to research in topics: Embryonic stem cell & Cellular differentiation. The author has an hindex of 1, co-authored 1 publications receiving 2046 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings and are suitable for scaleup production is demonstrated.
Abstract: Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system, hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1, which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype, stable proliferation rate, and high telomerase activity. Similar to cells cultured on feeders, hES cells maintained under feeder-free conditions expressed OCT-4, hTERT, alkaline phosphatase, and surface markers including SSEA-4, Tra 1-60, and Tra 1-81. In addition, hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus, the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.

2,092 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that activation of the canonical Wnt pathway is sufficient to maintain self-renewal of both HESCs and MESCs, and the use of GSK-3-specific inhibitors such as BIO may have practical applications in regenerative medicine.
Abstract: Human and mouse embryonic stem cells (HESCs and MESCs, respectively) self-renew indefinitely while maintaining the ability to generate all three germ-layer derivatives. Despite the importance of ESCs in developmental biology and their potential impact on tissue replacement therapy, the molecular mechanism underlying ESC self-renewal is poorly understood. Here we show that activation of the canonical Wnt pathway is sufficient to maintain self-renewal of both HESCs and MESCs. Although Stat-3 signaling is involved in MESC self-renewal, stimulation of this pathway does not support self-renewal of HESCs. Instead we find that Wnt pathway activation by 6-bromoindirubin-3'-oxime (BIO), a specific pharmacological inhibitor of glycogen synthase kinase-3 (GSK-3), maintains the undifferentiated phenotype in both types of ESCs and sustains expression of the pluripotent state-specific transcription factors Oct-3/4, Rex-1 and Nanog. Wnt signaling is endogenously activated in undifferentiated MESCs and is downregulated upon differentiation. In addition, BIO-mediated Wnt activation is functionally reversible, as withdrawal of the compound leads to normal multidifferentiation programs in both HESCs and MESCs. These results suggest that the use of GSK-3-specific inhibitors such as BIO may have practical applications in regenerative medicine.

2,263 citations

Journal ArticleDOI
TL;DR: This work generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4, and identified a cocktail of pro-survival factors that limitsCardiomyocyte death after transplantation.
Abstract: Cardiomyocytes derived from human embryonic stem (hES) cells potentially offer large numbers of cells to facilitate repair of the infarcted heart. However, this approach has been limited by inefficient differentiation of hES cells into cardiomyocytes, insufficient purity of cardiomyocyte preparations and poor survival of hES cell-derived myocytes after transplantation. Seeking to overcome these challenges, we generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4. We then identified a cocktail of pro-survival factors that limits cardiomyocyte death after transplantation. These techniques enabled consistent formation of myocardial grafts in the infarcted rat heart. The engrafted human myocardium attenuated ventricular dilation and preserved regional and global contractile function after myocardial infarction compared with controls receiving noncardiac hES cell derivatives or vehicle. The ability of hES cell-derived cardiomyocytes to partially remuscularize myocardial infarcts and attenuate heart failure encourages their study under conditions that closely match human disease.

2,173 citations

Journal ArticleDOI
TL;DR: Application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency and facilitates subcloning after gene transfer, and enables SFEB-cultured hES Cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors.
Abstract: Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor1,2, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from ∼1% to ∼27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture3 and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.

2,094 citations

Journal ArticleDOI
TL;DR: This extract, termed Matrigel, Cultrex, or EHS matrix, promotes cell differentiation, and is used to measure the invasive activity of tumor cells and to improve graft survival, repair damaged tissues, and increase tumor growth.

1,413 citations

Journal ArticleDOI
TL;DR: It is shown that temporal modulation of Wnt signaling is both essential and sufficient for efficient cardiac induction in hPSCs under defined, growth factor-free conditions.
Abstract: Human pluripotent stem cells (hPSCs) offer the potential to generate large numbers of functional cardiomyocytes from clonal and patient-specific cell sources. Here we show that temporal modulation of Wnt signaling is both essential and sufficient for efficient cardiac induction in hPSCs under defined, growth factor-free conditions. shRNA knockdown of β-catenin during the initial stage of hPSC differentiation fully blocked cardiomyocyte specification, whereas glycogen synthase kinase 3 inhibition at this point enhanced cardiomyocyte generation. Furthermore, sequential treatment of hPSCs with glycogen synthase kinase 3 inhibitors followed by inducible expression of β-catenin shRNA or chemical inhibitors of Wnt signaling produced a high yield of virtually (up to 98%) pure functional human cardiomyocytes from multiple hPSC lines. The robust ability to generate functional cardiomyocytes under defined, growth factor-free conditions solely by genetic or chemically mediated manipulation of a single developmental pathway should facilitate scalable production of cardiac cells suitable for research and regenerative applications.

1,398 citations