scispace - formally typeset
Search or ask a question
Author

Katharina Billups

Bio: Katharina Billups is an academic researcher from University of Delaware. The author has contributed to research in topics: Glacial period & Foraminifera. The author has an hindex of 25, co-authored 66 publications receiving 10271 citations. Previous affiliations of Katharina Billups include University of California, Santa Cruz.


Papers
More filters
Journal ArticleDOI
27 Apr 2001-Science
TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Abstract: Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

8,903 citations

Journal ArticleDOI
TL;DR: This paper explored the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales.
Abstract: [1] We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27–0 Ma) history of paleotemperatures and the evolution of the δ18O values of seawater (δ18Osw) at a temporal resolution of ∼100–200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal δ18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of ∼1°C. During the mid-Miocene phase of Antarctic ice sheet growth (∼15–13 Ma), water temperatures cool by ∼3°C. Unlike the benthic foraminiferal δ18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ∼12 and ∼8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ∼4°C cooling at site 747. A comparison of our δ18Osw curve to the Haq et al. [1987] sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ∼12–11 Ma in particular, when benthic foraminiferal δ18O values do not support a further increase in ice volume, the δ18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based δ18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the δ18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the δ18O record.

262 citations

Journal ArticleDOI
TL;DR: In this article, 13 laboratories from the USA and Europe participated in an intercomparison study of Mg/Ca and Sr/Ca measurements in foraminifera, including five planktonic species from surface sediments from different geographical regions and water depths.
Abstract: Thirteen laboratories from the USA and Europe participated in an intercomparison study of Mg/Ca and Sr/Ca measurements in foraminifera. The study included five planktonic species from surface sediments from different geographical regions and water depths. Each of the laboratories followed their own cleaning and analytical procedures and had no specific information about the samples. Analysis of solutions of known Mg/Ca and Sr/Ca ratios showed that the intralaboratory instrumental precision is better than 0.5% for both Mg/Ca and Sr/Ca measurements, regardless whether ICP-OES or ICP-MS is used. The interlaboratory precision on the analysis of standard solutions was about 1.5% and 0.9% for Mg/Ca and Sr/Ca measurements, respectively. These are equivalent to Mg/Ca-based temperature repeatability and reproducibility on the analysis of solutions of ±0.2°C and ±0.5°C, respectively. The analysis of foraminifera suggests an interlaboratory variance of about ±8% (%RSD) for Mg/Ca measurements, which translates to reproducibility of about ±2–3°C. The relatively large range in the reproducibility of foraminiferal analysis is primarily due to relatively poor intralaboratory repeatability (about ±1–2°C) and a bias (about 1°C) due to the application of different cleaning methods by different laboratories. Improving the consistency of cleaning methods among laboratories will, therefore, likely lead to better reproducibility. Even more importantly, the results of this study highlight the need for standards calibration among laboratories as a first step toward improving interlaboratory compatibility.

192 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (δ18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminIFeral δ18 O values.

161 citations

01 Dec 2002
TL;DR: In this paper, the authors investigated the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (δ18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminIFeral δ18 O values.
Abstract: We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (δ18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal δ18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. [Science 287 (2002) 269–272] and the Neogene record from the Southern Ocean of Billups and Schrag [Paleoceanography 17 (2002) 10.1029/2000PA000567], we obtain three, almost complete representations of the δ18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the δ18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (∼49–40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding δ18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among δ18Osw records is similar and similar to longer-term trends in the benthic foraminiferal δ18O record. An exception occurs during the Pliocene when δ18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal δ18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum δ18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters [Schrag et al., Science 272 (1996) 1930–1932] further highlighting the value of the new Mg/Ca calibrations of Martin et al. [Earth Planet. Sci. Lett. 198 (2002) 193–209] and Lear et al. [Geochim. Cosmochim. Acta 66 (2002) 3375–3387] applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.

147 citations


Cited by
More filters
Journal ArticleDOI
27 Apr 2001-Science
TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Abstract: Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

8,903 citations

Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

Journal ArticleDOI
TL;DR: In this article, a new solution for the astronomical computation of the insolation quantities on Earth spanning from −250 m to 250 m was presented, where the most regular components of the orbital solution could still be used over a much longer time span, which is why they provided here the solution over 250 m.
Abstract: We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. [CITE]) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. [CITE]), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about 0.38 degree in the next few millions of years, due to the crossing of the resonance (Laskar et al. [CITE]). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to , with a fixed frequency of /yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about , and over the full Mesozoic era.

2,992 citations

Journal ArticleDOI
17 Jan 2008-Nature
TL;DR: Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.
Abstract: Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.

2,771 citations

Journal ArticleDOI
25 Nov 2005-Science
TL;DR: Long-term sea level peaked at 100 ± 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred, and presents a new sea-level record for the past 100 million years.
Abstract: We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 ± 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 10 4 - to 10 6 -year scale, but a link between oxygen isotope and sea level on the 10 7 -year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present).

2,740 citations