scispace - formally typeset
Search or ask a question
Author

Katharina Wimmer

Bio: Katharina Wimmer is an academic researcher from Innsbruck Medical University. The author has contributed to research in topics: Lynch syndrome & Neurofibromatosis. The author has an hindex of 30, co-authored 69 publications receiving 2987 citations. Previous affiliations of Katharina Wimmer include Medical University of Vienna & University of Vienna.


Papers
More filters
Journal ArticleDOI
16 Nov 2017-Cell
TL;DR: An extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations, uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load.

567 citations

Journal ArticleDOI
TL;DR: It is expected that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour, allowing adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.
Abstract: Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.

345 citations

Journal ArticleDOI
TL;DR: The genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this recessively inherited cancer syndrome are summarised.
Abstract: Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly cafe au lait spots. Alluding to the underlying mechanism, this condition may be termed as “constitutional mismatch repair-deficiency (CMMR-D) syndrome”. To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.

267 citations

Journal ArticleDOI
TL;DR: This study provides valuable predictors for the splicing pathway used upon 5′ss mutation, and underscores the importance of using RNA‐based techniques, together with methods to identify microdeletions and intragenic copy‐number changes, for effective and reliable NF1 mutation detection.
Abstract: We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.

115 citations

Journal ArticleDOI
TL;DR: The results provide evidence that PLAG1 overexpression may be responsible for the frequently observed up‐regulation of IGF2 in hepatoblastoma and therefore may be implicated in the molecular pathogenesis of this childhood neoplasia.
Abstract: There is evidence that 8q amplification is associated with poor prognosis in hepatoblastoma. A previous comparative genomic hybridization analysis identified a critical region in chromosomal bands 8q11.2-q13. Using restriction landmark genomic scanning in combination with a virtual genome scan, we showed that this region is delineated by sequences within contig NT_008183 of chromosomal subbands 8q11.22-q11.23. A real-time PCR-based genomic copy number assay of 20 hepatoblastomas revealed gain or amplification in this critical chromosomal region in eight tumors. The expression of four genes and expressed sequence tags (ESTs) within this newly defined region was assayed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in four tumors with and six tumors without gain or amplification. The PLAG1 oncogene was found to be highly expressed in all but one tumor compared to normal liver tissue. Furthermore, quantitative RT-PCR revealed that the expression level of the developmentally regulated transcription factor PLAG1 was 3-12 times greater in hepatoblastoma tumors and cell lines compared to age-matched normal liver and comparable to the expression in fetal liver tissue. PLAG1 has been shown be a transcriptional activator of IGF2 in other tumor types. Using luciferase reporter assays, we demonstrated that PLAG1 transactivates transcription from the embryonic IGF2 promoter P3, also in hepatoblastoma cell lines. Thus, our results provide evidence that PLAG1 overexpression may be responsible for the frequently observed up-regulation of IGF2 in hepatoblastoma and therefore may be implicated in the molecular pathogenesis of this childhood neoplasia.

113 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Human Splicing Finder is designed, a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence, and it is shown that the mutation effect was correctly predicted in almost all cases.
Abstract: Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

2,300 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
12 Aug 2002-Oncogene
TL;DR: The high frequency of cancer-linked DNA hypomethylation, the nature of the affected sequences, and the absence of associations with DNA hypermethylation are consistent with an independent role for DNA undermethylation in cancer formation or tumor progression.
Abstract: Cancer-associated DNA hypomethylation is as prevalent as cancer-linked hypermethylation, but these two types of epigenetic abnormalities usually seem to affect different DNA sequences. Much more of the genome is generally subject to undermethylation rather than overmethylation. Genomic hypermethylation in cancer has been observed most often in CpG islands in gene regions. In contrast, very frequent hypomethylation is seen in both highly and moderately repeated DNA sequences in cancer, including heterochromatic DNA repeats, dispersed retrotransposons, and endogenous retroviral elements. Also, unique sequences, including transcription control sequences, are often subject to cancer-associated undermethylation. The high frequency of cancer-linked DNA hypomethylation, the nature of the affected sequences, and the absence of associations with DNA hypermethylation are consistent with an independent role for DNA undermethylation in cancer formation or tumor progression. Increased karyotypic instability and activation of tumor-promoting genes by cis or trans effects, that might include altered heterochromatin-euchromatin interactions, may be important consequences of DNA hypomethylation which favor oncogenesis. The relationship of DNA hypomethylation to tumorigenesis is important to be considered in the light of cancer therapies involving decreasing DNA methylation. Inducing DNA hypomethylation may have short-term anticancer effects, but might also help speed tumor progression from cancer cells surviving the DNA demethylation chemotherapy.

1,496 citations

Journal ArticleDOI
TL;DR: Copy number variation, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution and appear much higher for CNVs than for SNPs.
Abstract: Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution.

1,100 citations

Journal ArticleDOI
15 Mar 2018-Nature
TL;DR: The data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.
Abstract: Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.

958 citations