scispace - formally typeset
Search or ask a question
Author

Katharine H. D. Crawford

Other affiliations: University of Washington
Bio: Katharine H. D. Crawford is an academic researcher from Fred Hutchinson Cancer Research Center. The author has contributed to research in topics: Linoleic acid binding. The author has an hindex of 1, co-authored 2 publications receiving 1 citations. Previous affiliations of Katharine H. D. Crawford include University of Washington.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the receptor-binding domain (RBD) that have been identified as a linoleic acid binding pocket.
Abstract: The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.

27 citations

Posted ContentDOI
16 May 2021-bioRxiv
TL;DR: In this paper, the authors used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the receptor-binding domain (RBD) that have been identified as a linoleic acid binding pocket.
Abstract: The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40{degrees}C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.

Cited by
More filters
Journal ArticleDOI
TL;DR: SARS-CoV-2 continues to acquire mutations in the spike receptor-binding domain (RBD) that impact ACE2 receptor binding, folding stability, and antibody recognition, and these mutations shape the future evolutionary potential of the virus through the phenomenon of epistasis.
Abstract: SARS-CoV-2 continues to acquire mutations in the spike receptor-binding domain (RBD) that impact ACE2 receptor binding, folding stability, and antibody recognition. Deep mutational scanning prospectively characterizes the impacts of mutations on these biochemical properties, enabling rapid assessment of new mutations seen during viral surveillance. However, the effects of mutations can change as the virus evolves, requiring updated deep mutational scans. We determined the impacts of all amino acid mutations in the Omicron BA.1 and BA.2 RBDs on ACE2-binding affinity, RBD folding, and escape from binding by the LY-CoV1404 (bebtelovimab) monoclonal antibody. The effects of some mutations in Omicron RBDs differ from those measured in the ancestral Wuhan-Hu-1 background. These epistatic shifts largely resemble those previously seen in the Beta variant due to the convergent epistatically modifying N501Y substitution. However, Omicron variants show additional lineage-specific shifts, including examples of the epistatic phenomenon of entrenchment that causes the Q498R and N501Y substitutions present in Omicron to be more favorable in that background than in earlier viral strains. In contrast, the Omicron substitution Q493R exhibits no sign of entrenchment, with the derived state, R493, being as unfavorable for ACE2 binding in Omicron RBDs as in Wuhan-Hu-1. Likely for this reason, the R493Q reversion has occurred in Omicron sub-variants including BA.4/BA.5 and BA.2.75, where the affinity buffer from R493Q reversion may potentiate concurrent antigenic change. Consistent with prior studies, we find that Omicron RBDs have reduced expression, and identify candidate stabilizing mutations that ameliorate this deficit. Last, our maps highlight a broadening of the sites of escape from LY-CoV1404 antibody binding in BA.1 and BA.2 compared to the ancestral Wuhan-Hu-1 background. These BA.1 and BA.2 deep mutational scanning datasets identify shifts in the RBD mutational landscape and inform ongoing efforts in viral surveillance. Author Summary SARS-CoV-2 evolves in part through mutations in its spike receptor-binding domain. As these mutations accumulate in evolved variants, they shape the future evolutionary potential of the virus through the phenomenon of epistasis. We characterized the functional impacts of mutations in the Omicron BA.1 and BA.2 receptor-binding domains on ACE2 receptor binding, protein folding, and recognition by the clinical LY-CoV1404 antibody. We then compared the measurements to prior data for earlier variants. These comparisons identify patterns of epistasis that may alter future patterns of Omicron evolution, such as turnover in the availability of specific affinity-enhancing mutations and an expansion in the number of paths of antibody escape from a key monoclonal antibody used for therapeutic treatment of COVID-19. This work informs continued efforts in viral surveillance and forecasting.

48 citations

Journal ArticleDOI
TL;DR: Durable protection against Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain on the I53-50 nanoparticle adjuvanted with AS03 is demonstrated.
Abstract: Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-β (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine. Description Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine. Delving into durability Despite the success of the first SARS-CoV-2 vaccines, additional vaccines are essential for responding to variants of concern. Here, Arunachalam et al. tested the durability of immune responses elicited by a SARS-CoV-2 subunit nanoparticle vaccine. This vaccine was composed of the receptor binding domain (RBD) of the ancestral strain of SARS-CoV-2 and was adjuvanted with AS03. Two immunizations with the vaccine resulted in durable, but not cross-reactive, immunity in nonhuman primates (NHPs); further boosting with a version of the vaccine containing the Beta variant or the ancestral RBD elicited cross-reactive immune responses that conferred protection against Omicron challenge in the NHPs. These data suggest that vaccines derived from different SARS-CoV-2 variants may elicit cross-reactive protection.

23 citations

Journal ArticleDOI
TL;DR: In this article , a complete membrane-embedded SARS-CoV-2 spike glycoprotein was modeled and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets.

12 citations

Posted ContentDOI
21 Jun 2022-bioRxiv
TL;DR: The results revealed that in terms of S protein expression, the mutational tolerability of NTD residues was inversely correlated with their proximity to the RBD and S2, and identified NTD mutations at the interdomain interface that increased Sprotein expression without altering its antigenicity.
Abstract: Increasing the expression level of the SARS-CoV-2 spike (S) protein has been critical for COVID-19 vaccine development. While previous efforts largely focused on engineering the receptor-binding domain (RBD) and the S2 subunit, the N-terminal domain (NTD) has been long overlooked due to the limited understanding of its biophysical constraints. In this study, the effects of thousands of NTD single mutations on S protein expression were quantified by deep mutational scanning. Our results revealed that in terms of S protein expression, the mutational tolerability of NTD residues was inversely correlated with their proximity to the RBD and S2. We also identified NTD mutations at the interdomain interface that increased S protein expression without altering its antigenicity. Overall, this study not only advances the understanding of the biophysical constraints of the NTD, but also provides invaluable insights into S-based immunogen design.

10 citations

Posted ContentDOI
20 Sep 2022
TL;DR: In this article , the effects of all amino acid mutations in the Omicron BA.1 and BA.2 RBDs on ACE2-binding affinity, RBD folding, and escape from binding by the LY-CoV1404 (bebtelovimab) monoclonal antibody were determined.
Abstract: Abstract SARS-CoV-2 continues to acquire mutations in the spike receptor-binding domain (RBD) that impact ACE2 receptor binding, folding stability, and antibody recognition. Deep mutational scanning prospectively characterizes the impacts of mutations on these biochemical properties, enabling rapid assessment of new mutations seen during viral surveillance. However, the effects of mutations can change as the virus evolves, requiring updated deep mutational scans. We determined the impacts of all amino acid mutations in the Omicron BA.1 and BA.2 RBDs on ACE2-binding affinity, RBD folding, and escape from binding by the LY-CoV1404 (bebtelovimab) monoclonal antibody. The effects of some mutations in Omicron RBDs differ from those measured in the ancestral Wuhan-Hu-1 background. These epistatic shifts largely resemble those previously seen in the Beta variant due to the convergent epistatically modifying N501Y substitution. However, Omicron variants show additional lineage-specific shifts, including examples of the epistatic phenomenon of entrenchment that causes the Q498R and N501Y substitutions present in Omicron to be more favorable in that background than in earlier viral strains. In contrast, the Omicron substitution Q493R exhibits no sign of entrenchment, with the derived state, R493, being as unfavorable for ACE2 binding in Omicron RBDs as in Wuhan-Hu-1. Likely for this reason, the R493Q reversion has occurred in Omicron sub-variants including BA.4/BA.5 and BA.2.75, where the affinity buffer from R493Q reversion may potentiate concurrent antigenic change. Consistent with prior studies, we find that Omicron RBDs have reduced expression, and identify candidate stabilizing mutations that ameliorate this deficit. Last, our maps highlight a broadening of the sites of escape from LY-CoV1404 antibody binding in BA.1 and BA.2 compared to the ancestral Wuhan-Hu-1 background. These BA.1 and BA.2 deep mutational scanning datasets identify shifts in the RBD mutational landscape and inform ongoing efforts in viral surveillance. Author Summary SARS-CoV-2 evolves in part through mutations in its spike receptor-binding domain. As these mutations accumulate in evolved variants, they shape the future evolutionary potential of the virus through the phenomenon of epistasis. We characterized the functional impacts of mutations in the Omicron BA.1 and BA.2 receptor-binding domains on ACE2 receptor binding, protein folding, and recognition by the clinical LY-CoV1404 antibody. We then compared the measurements to prior data for earlier variants. These comparisons identify patterns of epistasis that may alter future patterns of Omicron evolution, such as turnover in the availability of specific affinity-enhancing mutations and an expansion in the number of paths of antibody escape from a key monoclonal antibody used for therapeutic treatment of COVID-19. This work informs continued efforts in viral surveillance and forecasting.

9 citations