scispace - formally typeset
Search or ask a question
Author

Katherine A. Donovan

Other affiliations: University of Canterbury
Bio: Katherine A. Donovan is an academic researcher from Harvard University. The author has contributed to research in topics: Protein degradation & Medicine. The author has an hindex of 19, co-authored 59 publications receiving 1578 citations. Previous affiliations of Katherine A. Donovan include University of Canterbury.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that binding between proteins that have not evolved to interact is plastic, and findings that plastic interprotein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands.
Abstract: Heterobifunctional small-molecule degraders that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. However, we currently lack a detailed understanding of the molecular basis for target recruitment and selectivity, which is critically required to enable rational design of degraders. Here we utilize a comprehensive characterization of the ligand-dependent CRBN-BRD4 interaction to demonstrate that binding between proteins that have not evolved to interact is plastic. Multiple X-ray crystal structures show that plasticity results in several distinct low-energy binding conformations that are selectively bound by ligands. We demonstrate that computational protein-protein docking can reveal the underlying interprotein contacts and inform the design of a BRD4 selective degrader that can discriminate between highly homologous BET bromodomains. Our findings that plastic interprotein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands.

330 citations

Journal ArticleDOI
01 Aug 2018-eLife
TL;DR: It is found that thalidomide induces degradation of SALL4 exclusively in humans, primates, and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidOMide syndrome.
Abstract: In historical attempts to treat morning sickness, use of the drug thalidomide led to the birth of thousands of children with severe birth defects. Despite their teratogenicity, thalidomide and related IMiD drugs are now a mainstay of cancer treatment; however, the molecular basis underlying the pleiotropic biology and characteristic birth defects remains unknown. Here we show that IMiDs disrupt a broad transcriptional network through induced degradation of several C2H2 zinc finger transcription factors, including SALL4, a member of the spalt-like family of developmental transcription factors. Strikingly, heterozygous loss of function mutations in SALL4 result in a human developmental condition that phenocopies thalidomide-induced birth defects such as absence of thumbs, phocomelia, defects in ear and eye development, and congenital heart disease. We find that thalidomide induces degradation of SALL4 exclusively in humans, primates, and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidomide syndrome.

274 citations

Journal ArticleDOI
TL;DR: In this article, a phthalimide-based degrader that exploits protein-interface determinants to achieve proteome-wide selectivity for the degradation of cyclin-dependent kinase 6 (CDK6) was proposed.

170 citations

Journal ArticleDOI
03 Jun 2020-Nature
TL;DR: It is demonstrated that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and this is proposed as a broader strategy through which target-binding molecules could be converted into molecular glues.
Abstract: Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules as mentioned in this paper .
Abstract: Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology. Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.

527 citations

Journal ArticleDOI
TL;DR: A previously understudied benefit of small molecule proteolysis-targeting chimeras (PROTACs) that recruit E3 ubiquitin ligases to target proteins for their ubiquitination and subsequent proteasome-mediated degradation is reported.

487 citations

Journal ArticleDOI
02 Apr 2020-Cell
TL;DR: The burgeoning field of proteolysis-targeting chimeras (PROTACs), which are capable of modulating protein concentrations at a post-translational level by co-opting the ubiquitin-proteasome system, are described and their application to drug discovery is described.

481 citations

Journal ArticleDOI
TL;DR: Opportunities and challenges for expanding the applicability of targeted protein degradation are discussed, with a focus on the large family of E3 ubiquitin ligases that have a key role in the process.
Abstract: Proteolysis-targeting chimeras (PROTACs) and related molecules that induce targeted protein degradation by the ubiquitin-proteasome system represent a new therapeutic modality and are the focus of great interest, owing to potential advantages over traditional occupancy-based inhibitors with respect to dosing, side effects, drug resistance and modulating 'undruggable' targets. However, the technology is still maturing, and the design elements for successful PROTAC-based drugs are currently being elucidated. Importantly, fewer than 10 of the more than 600 E3 ubiquitin ligases have so far been exploited for targeted protein degradation, and expansion of knowledge in this area is a key opportunity. Here, we briefly discuss lessons learned about targeted protein degradation in chemical biology and drug discovery and systematically review the expression profile, domain architecture and chemical tractability of human E3 ligases that could expand the toolbox for PROTAC discovery.

456 citations

Journal ArticleDOI
TL;DR: mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.
Abstract: The recognition of DNA as an immune-stimulatory molecule is an evolutionarily conserved mechanism to initiate rapid innate immune responses against microbial pathogens. The cGAS-STING pathway was discovered as an important DNA-sensing machinery in innate immunity and viral defense. Recent advances have now expanded the roles of cGAS-STING to cancer. Highly aggressive, unstable tumors have evolved to co-opt this program to drive tumorigenic behaviors. In this review, we discuss the link between the cGAS-STING DNA-sensing pathway and antitumor immunity as well as cancer progression, genomic instability, the tumor microenvironment, and pharmacologic strategies for cancer therapy. SIGNIFICANCE: The cGAS-STING pathway is an evolutionarily conserved defense mechanism against viral infections. Given its role in activating immune surveillance, it has been assumed that this pathway primarily functions as a tumor suppressor. Yet, mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.

392 citations