scispace - formally typeset
Search or ask a question
Author

Katherine E. Fish

Bio: Katherine E. Fish is an academic researcher from University of Sheffield. The author has contributed to research in topics: Biofilm & Water quality. The author has an hindex of 9, co-authored 15 publications receiving 565 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated and will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.

212 citations

Journal ArticleDOI
TL;DR: This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health.

122 citations

Journal ArticleDOI
14 Jul 2016
TL;DR: A critical discussion of current drinking water biofilm research, highlighting the importance of biofilms, including the extracellular polymeric substances (EPS) and their interactions with the physico-chemical environment is provided in this article.
Abstract: Drinking water quality deteriorates during transportation through drinking water distribution systems (DWDS). Microbial activity and ecology, particularly within biofilms that occur on the inner-pipe surface of DWDS, are emerging as important drivers in the degradation process. Yet, we have little real-world applicable understanding of the DWDS biofilms. This paper provides a critical discussion of current drinking water biofilm research, highlighting the importance of biofilms, including the extracellular polymeric substances (EPS) and their interactions with the physico-chemical environment. Evidence is presented that the tools for biofilm analysis are becoming more accessible and there is now the opportunity to translate microbial research from idealised bench-top settings to practical real-world applications. It is essential that we understand biofilms and manage them within ageing, deteriorating DWDS infrastructure to protect public health and wellbeing.

85 citations

Journal ArticleDOI
TL;DR: A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied.

76 citations

Journal ArticleDOI
23 Feb 2015-PLOS ONE
TL;DR: Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility, indicating that active colonisation of the pipe wall is an important driver in material accumulation within theDWDS.
Abstract: Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.

71 citations


Cited by
More filters
Journal ArticleDOI

1,380 citations

01 Jan 2005
TL;DR: The recent availability of extensive metagenomic sequences from various environmental microbial communities has extended the postgenomic era to the field of environmental microbiology as mentioned in this paper, however, the application of proteomic investigations to complex microbial assemblages such as seawater and soil still presents considerable challenges.
Abstract: The recent availability of extensive metagenomic sequences from various environmental microbial communities has extended the postgenomic era to the field of environmental microbiology. Although still restricted to a small number of studies, metaproteomic investigations have revealed interesting aspects of functional gene expression within microbial habitats that contain limited microbial diversity. These studies highlight the potential of proteomics for the study of microbial consortia. However, the application of proteomic investigations to complex microbial assemblages such as seawater and soil still presents considerable challenges. Nonetheless, metaproteomics will enhance the understanding of the microbial world and link microbial community composition to function.

293 citations

Journal ArticleDOI
TL;DR: How knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer’s tap is discussed.
Abstract: Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer’s tap. A new definition and methodological approach for biological stability is proposed.

290 citations

Journal ArticleDOI
TL;DR: Management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control.
Abstract: In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for examp...

268 citations

Journal ArticleDOI
TL;DR: This review evaluates different treatment methods and various techniques used to assess biocide treatment outcome including microbiology, molecular biology, corrosion testing and electrochemical methods.

234 citations