scispace - formally typeset
Search or ask a question
Author

Katherine E. White

Bio: Katherine E. White is an academic researcher from University of London. The author has contributed to research in topics: Neuron & Neuroblast. The author has an hindex of 1, co-authored 1 publications receiving 12 citations.

Papers
More filters
Posted ContentDOI
15 Jan 2017-bioRxiv
TL;DR: It is shown that paired embryonic neuroblasts generate central complex ring neurons that mediate sensory-motor transformation and action selection in Drosophila and this model substantiates genetic and behavioural observations suggesting that R neuron circuitry functions as salience detector using competitive inhibition to amplify, maintain or switch between activity states.
Abstract: The insect central complex and vertebrate basal ganglia are forebrain centres involved in selection and maintenance of behavioural actions. However, little is known about the formation of the underlying circuits, or how they integrate sensory information for motor actions. Here, we show that paired embryonic neuroblasts generate central complex ring neurons that mediate sensory-motor transformation and action selection in Drosophila. Lineage analysis resolves four ring neuron subtypes, R1-R4, that form GABAergic inhibition circuitry among inhibitory sister cells. Genetic manipulations, together with functional imaging, demonstrate subtype-specific R neurons mediate the selection and maintenance of behavioural activity. A computational model substantiates genetic and behavioural observations suggesting that R neuron circuitry functions as salience detector using competitive inhibition to amplify, maintain or switch between activity states. The resultant gating mechanism translates facilitation, inhibition and disinhibition of behavioural activity as R neuron functions into selection of motor actions and their organisation into action sequences.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The observed patterns of activity in this network that closely resemble the reported Ca2+ phenomena suggests that the ring-attractor computation is a robust output of this circuit, apparently arising from its high-level network properties (topological configuration, local excitation and long-range inhibition) rather than fine-scale biological detail.
Abstract: Animal navigation is accomplished by a combination of landmark-following and dead reckoning based on estimates of self motion. Both of these approaches require the encoding of heading information, which can be represented as an allocentric or egocentric azimuthal angle. Recently, Ca2+ correlates of landmark position and heading direction, in egocentric coordinates, were observed in the ellipsoid body (EB), a ring-shaped processing unit in the fly central complex (Seelig and Jayaraman, 2015). These correlates displayed key dynamics of so-called ring attractors, namely: 1) responsiveness to the position of external stimuli, 2) persistence in the absence of external stimuli, 3) locking onto a single external stimulus when presented with two competitors, 4) stochastically switching between competitors with low probability, and 5) sliding or jumping between positions when an external stimulus moves. We hypothesized that ring attractor-like activity in the EB arises from reciprocal neuronal connections to a related structure, the protocerebral bridge (PB). Using recent light-microscopy resolution catalogues of neuronal cell types in the PB (Wolff et al., 2015; Lin et al., 2013), we determined a connectivity matrix for the PB-EB circuit. When activity in this network was simulated using a leaky-integrate-and-fire model, we observed patterns of activity that closely resemble the reported Ca2+ phenomena. All qualitative ring attractor behaviors were recapitulated in our model, allowing us to predict failure modes of the putative PB-EB ring attractor and the circuit dynamics phenotypes of thermogenetic or optogenetic manipulations. Ring attractor dynamics emerged under a wide variety of parameter configurations, even including non-spiking leaky-integrator implementations. This suggests that the ring-attractor computation is a robust output of this circuit, apparently arising from its high-level network properties (topological configuration, local excitation and long-range inhibition) rather than fine-scale biological detail.

78 citations

Journal ArticleDOI
TL;DR: Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons, suggesting evolutionarily conserved computational mechanisms for action selection in insects and vertebrates.
Abstract: Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.

57 citations

Journal ArticleDOI
TL;DR: Offshoring and outsourcing are not entirely painless, companies are keen to press ahead with their use as they try to work out where to focus internal resources as mentioned in this paper, however, outsourcing demands more than simply lobbing part of a project over the wall to another company's engineers.
Abstract: Electronic companies have discovered that outsourcing demands more than simply lobbing part of a project over the wall to another company's engineers. Offshoring and outsourcing are not entirely painless, companies are keen to press ahead with their use as they try to work out where to focus internal resources.

36 citations

Journal ArticleDOI
TL;DR: It is proposed that, when behaviourally relevant cues are available, the LALs may integrate orientation information from several sensory modalities thus leading to a collective output for steering driven by those cues.
Abstract: The lateral accessory lobes (LALs), paired structures that are homologous among all insect species, have been well studied for their role in pheromone tracking in silkmoths and phonotaxis in crickets, where their outputs have been shown to correlate with observed motor activity. Further studies have shown more generally that the LALs are crucial both for an insect's ability to steer correctly and for organising the outputs of the descending pathways towards the motor centres. In this context, we propose a framework by which the LALs may be generally involved in generating steering commands across a variety of insects and behaviours. Across different behaviours, we see that the LAL is involved in generating two kinds of steering: (1) search behaviours and (2) targeted steering driven by direct sensory information. Search behaviours are generated when the current behaviourally relevant cues are not available, and a well-described LAL subnetwork produces activity which increases sampling of the environment. We propose that, when behaviourally relevant cues are available, the LALs may integrate orientation information from several sensory modalities, thus leading to a collective output for steering driven by those cues. These steering commands are then sent to the motor centres, and an additional efference copy is sent back to the orientation-computing areas. In summary, we have taken known aspects of the neurophysiology and function of the insect LALs and generated a speculative framework that suggests how LALs might be involved in steering control for a variety of complex real-world behaviours in insects.

33 citations

Journal ArticleDOI
TL;DR: The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli.
Abstract: The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.

33 citations