Author
Katherine Faust
Other affiliations: University of South Carolina, University of California
Bio: Katherine Faust is an academic researcher from University of California, Irvine. The author has contributed to research in topic(s): Social network & Social network analysis (criminology). The author has an hindex of 29, co-authored 58 publication(s) receiving 34066 citation(s). Previous affiliations of Katherine Faust include University of South Carolina & University of California.
Papers published on a yearly basis
Papers
More filters
Book•
25 Nov 1994TL;DR: This paper presents mathematical representation of social networks in the social and behavioral sciences through the lens of Dyadic and Triadic Interaction Models, which describes the relationships between actor and group measures and the structure of networks.
Abstract: Part I. Introduction: Networks, Relations, and Structure: 1. Relations and networks in the social and behavioral sciences 2. Social network data: collection and application Part II. Mathematical Representations of Social Networks: 3. Notation 4. Graphs and matrixes Part III. Structural and Locational Properties: 5. Centrality, prestige, and related actor and group measures 6. Structural balance, clusterability, and transitivity 7. Cohesive subgroups 8. Affiliations, co-memberships, and overlapping subgroups Part IV. Roles and Positions: 9. Structural equivalence 10. Blockmodels 11. Relational algebras 12. Network positions and roles Part V. Dyadic and Triadic Methods: 13. Dyads 14. Triads Part VI. Statistical Dyadic Interaction Models: 15. Statistical analysis of single relational networks 16. Stochastic blockmodels and goodness-of-fit indices Part VII. Epilogue: 17. Future directions.
17,092 citations
TL;DR: This work characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links that connect them.
Abstract: Social Network Analysis Methods And Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links (relationships or interactions) that connect them. Examples of social structures commonly visualized through social network ...
12,074 citations
611 citations
TL;DR: In this paper, the authors discuss the conceptualization, measurement, and interpretation of centrality in affiliation networks, and present a new conceptualization of centralities that builds on the formal properties of affiliation networks and captures important theoretical insights about the positions of actors and events.
Abstract: This paper discusses the conceptualization, measurement, and interpretation of centrality in affiliation networks. Although centrality is a well-studied topic in social network analysis, and is one of the most widely used properties for studying affiliation networks, virtually all discussions of centrality and centralization have concerned themselves with one-mode networks. Bonacich's work on simultaneous group and individual centralities is a notable exception (Social Networks, 1991, 13, 155–168). I begin by outlining the distinctive features of affiliation networks and describe four motivations for centrality indices in affiliation networks. I then consider properties of some existing centrality indices for affiliation networks, including the relationship between centralities for actors and events in these networks, and present a new conceptualization of centrality that builds on the formal properties of affiliation networks and captures important theoretical insights about the positions of actors and events in these networks. These centralities are then illustrated on Galaskiewicz's data on club and board memberships of a sample of corporate executive officers (Social Organization of an Urban Grants Economy. New York: Academic Press, 1985). The conclusion to this paper discusses strengths and weaknesses of centrality indices when applied to affiliation networks.
456 citations
Cited by
More filters
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
35,972 citations
Book•
08 Sep 2000TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data
23,590 citations
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them.
Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network.
The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other.
The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.
17,463 citations
TL;DR: In this article, the authors present a model that incorporates this overall argument in the form of a series of hypothesized relationships between different dimensions of social capital and the main mechanisms and proces.
Abstract: Scholars of the theory of the firm have begun to emphasize the sources and conditions of what has been described as “the organizational advantage,” rather than focus on the causes and consequences of market failure. Typically, researchers see such organizational advantage as accruing from the particular capabilities organizations have for creating and sharing knowledge. In this article we seek to contribute to this body of work by developing the following arguments: (1) social capital facilitates the creation of new intellectual capital; (2) organizations, as institutional settings, are conducive to the development of high levels of social capital; and (3) it is because of their more dense social capital that firms, within certain limits, have an advantage over markets in creating and sharing intellectual capital. We present a model that incorporates this overall argument in the form of a series of hypothesized relationships between different dimensions of social capital and the main mechanisms and proces...
14,279 citations
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Abstract: Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web, are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering. © 2005 Elsevier B.V. All rights reserved.
8,690 citations