scispace - formally typeset
Search or ask a question
Author

Katherine Lawler

Bio: Katherine Lawler is an academic researcher from King's College London. The author has contributed to research in topics: Energy homeostasis & Breast cancer. The author has an hindex of 16, co-authored 28 publications receiving 627 citations. Previous affiliations of Katherine Lawler include University of Cambridge & Randall Division of Cell and Molecular Biophysics.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis.
Abstract: Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3–stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME.

86 citations

Journal ArticleDOI
TL;DR: MicroRNA expression profiling of a panel of HNSCC tumours with and without recurrent disease after surgery and radiotherapy detected miR‐196a as one of the highest upregulated miRNAs in the poor prognostic group, and data suggest that miR-196a and/or its target gene ANXA1 could represent important therapeutic targets in HNS CC.
Abstract: Radiotherapy is a major treatment modality for head and neck squamous cell carcinoma (HNSCC). Up to 50% of patients with locally advanced disease relapse after radical treatment and there is therefore a need to develop predictive bomarkers for clinical use that allow the selection of patients who are likely to respond. MicroRNA (miRNA) expression profiling of a panel of HNSCC tumours with and without recurrent disease after surgery and radiotherapy detected miR-196a as one of the highest upregulated miRNAs in the poor prognostic group. To further study the role of miR-196a, its expression was determined in eight head and neck cancer cell lines. Overexpression of miR-196a in HNSCC cells, with low endogenous miR-196a expression, significantly increased cell proliferation, migration and invasion, and induced epithelial to mesenchymal transition. Conversely, miR-196a knockdown in cells with high endogenous expression levels significantly reduced oncogenic behaviour. Importantly, overexpression of miR-196a increased radioresistance of cells as measured by gamma H2AX staining and MTT survival assay. Annexin A1 (ANXA1), a known target of miR-196a, was found to be directly modulated by miR-196a as measured by luciferase assay and confirmed by Western blot analysis. ANXA1 knockdown in HNSCC exhibited similar phenotypic effects to miR-196a overexpression, suggesting the oncogenic effect of miR-196a may at least be partly regulated through suppression of ANXA1. In conclusion, this study identifies miR-196a as a potential important biomarker of prognosis and response of HNSCC to radiotherapy. Furthermore, our data suggest that miR-196a and/or its target gene ANXA1 could represent important therapeutic targets in HNSCC.

78 citations

Journal ArticleDOI
TL;DR: Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets, and implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the epidermal growth factor receptor (EGFR) was found to interact directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain.
Abstract: The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.

57 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Journal ArticleDOI
TL;DR: The development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Abstract: The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.

987 citations

01 Jan 2016
TL;DR: The theory of simple liquids is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for reading theory of simple liquids. As you may know, people have search numerous times for their favorite readings like this theory of simple liquids, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious bugs inside their computer. theory of simple liquids is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the theory of simple liquids is universally compatible with any devices to read.

688 citations

Journal ArticleDOI
TL;DR: Work on the contribution of exosome cargo to cancer progression, the role ofExosomes in PMN establishment, and the function of exOSomes in organotropic metastasis are reviewed.

684 citations