scispace - formally typeset
Search or ask a question
Author

Katherine S. Elliott

Bio: Katherine S. Elliott is an academic researcher from University of Oxford. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 26, co-authored 43 publications receiving 13239 citations. Previous affiliations of Katherine S. Elliott include Wellcome Trust Centre for Human Genetics.


Papers
More filters
Journal ArticleDOI
11 May 2007-Science
TL;DR: A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI).
Abstract: Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes-susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.

4,184 citations

Journal ArticleDOI
01 Jun 2007-Science
TL;DR: These findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect and underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 1 diabetes.
Abstract: The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.

2,183 citations

Journal ArticleDOI
Eleftheria Zeggini1, Laura J. Scott2, Richa Saxena, Benjamin F. Voight, Jonathan Marchini3, T Hu2, de Bakker Piw.4, de Bakker Piw.5, de Bakker Piw.6, Gonçalo R. Abecasis2, Peter Almgren7, Gregers S. Andersen8, Kristin Ardlie6, Kristina Bengtsson Boström, Richard N. Bergman9, Lori L. Bonnycastle10, Knut Borch-Johnsen11, Knut Borch-Johnsen8, Noël P. Burtt6, H Chen12, Peter S. Chines10, Mark J. Daly, P Deodhar10, Ding C-J.2, Doney Asf.13, William L. Duren2, Katherine S. Elliott1, Mike Erdos10, Timothy M. Frayling14, Rachel M. Freathy14, Lauren Gianniny6, Harald Grallert, Niels Grarup8, Christopher J. Groves3, Candace Guiducci6, Torben Hansen8, Christian Herder15, Graham A. Hitman16, Thomas Edward Hughes12, Bo Isomaa, Anne U. Jackson2, Torben Jørgensen17, Augustine Kong18, Kari Kubalanza10, Finny G Kuruvilla6, Finny G Kuruvilla4, Johanna Kuusisto19, Claudia Langenberg20, Hana Lango14, Torsten Lauritzen21, Yun Li2, Cecilia M. Lindgren1, Cecilia M. Lindgren3, Valeriya Lyssenko7, Amanda F. Marvelle22, Christine Meisinger, Kristian Midthjell23, Karen L. Mohlke22, Mario A. Morken10, Andrew D. Morris13, Narisu Narisu10, Peter M. Nilsson7, Katharine R. Owen3, Palmer Cna.13, Felicity Payne24, Perry Jrb.14, E Pettersen23, Carl Platou23, Inga Prokopenko1, Inga Prokopenko3, Lu Qi4, Lu Qi5, L Qin22, Nigel W. Rayner3, Nigel W. Rayner1, Matthew G. Rees10, J J Roix12, A Sandbaek11, Beverley M. Shields, Marketa Sjögren7, Valgerdur Steinthorsdottir18, Heather M. Stringham2, Amy J. Swift10, Gudmar Thorleifsson18, Unnur Thorsteinsdottir18, Nicholas J. Timpson1, Nicholas J. Timpson25, Tiinamaija Tuomi26, Jaakko Tuomilehto26, Mark Walker27, Richard M. Watanabe9, Michael N. Weedon14, Cristen J. Willer2, Thomas Illig, Kristian Hveem23, Frank B. Hu4, Frank B. Hu5, Markku Laakso19, Kari Stefansson18, Oluf Pedersen11, Oluf Pedersen8, Nicholas J. Wareham20, Inês Barroso24, Andrew T. Hattersley14, Francis S. Collins10, Leif Groop26, Leif Groop7, Mark I. McCarthy1, Mark I. McCarthy3, Michael Boehnke2, David Altshuler 
TL;DR: The results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D, and detect at least six previously unknown loci with robust evidence for association.
Abstract: Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.

1,872 citations

Journal ArticleDOI
TL;DR: By combining genome-wide association data from 8,130 individuals with type 2 diabetes and 38,987 controls of European descent and following up previously unidentified meta-analysis signals, 12 new T2D association signals are identified with combined P < 5 × 10−8.
Abstract: By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.

1,785 citations

Journal ArticleDOI
TL;DR: In this paper, the association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10(-24)), CYP1A2(P = 1 × 10-23), FGF5 (P=1 × 10 -21), SH2B3(P= 3 × 10−18), MTHFR(MTHFR), c10orf107(P), ZNF652(ZNF652), PLCD3 (P,P = 5 × 10 −9),
Abstract: Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10(-24)), CYP1A2 (P = 1 × 10(-23)), FGF5 (P = 1 × 10(-21)), SH2B3 (P = 3 × 10(-18)), MTHFR (P = 2 × 10(-13)), c10orf107 (P = 1 × 10(-9)), ZNF652 (P = 5 × 10(-9)) and PLCD3 (P = 1 × 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.

1,205 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations

Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations

Journal ArticleDOI
TL;DR: The Statistical Update represents the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA's My Life Check - Life’s Simple 7, which include core health behaviors and health factors that contribute to cardiovascular health.
Abstract: Each chapter listed in the Table of Contents (see next page) is a hyperlink to that chapter. The reader clicks the chapter name to access that chapter. Each chapter listed here is a hyperlink. Click on the chapter name to be taken to that chapter. Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together in a single document the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA’s My Life Check - Life’s Simple 7 (Figure1), which include core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure [BP], and glucose control) that contribute to cardiovascular health. The Statistical Update represents …

5,102 citations