scispace - formally typeset
Search or ask a question
Author

Kathleen A. Cronin

Bio: Kathleen A. Cronin is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Population & Cancer. The author has an hindex of 47, co-authored 93 publications receiving 16717 citations. Previous affiliations of Kathleen A. Cronin include National Center for Health Statistics.


Papers
More filters
Journal ArticleDOI
TL;DR: Seven statistical models showed that both screening mammography and treatment have helped reduce the rate of death from breast cancer in the United States.
Abstract: BACKGROUND We used modeling techniques to assess the relative and absolute contributions of screening mammography and adjuvant treatment to the reduction in breast-cancer mortality in the United States from 1975 to 2000. METHODS A consortium of investigators developed seven independent statistical models of breast-cancer incidence and mortality. All seven groups used the same sources to obtain data on the use of screening mammography, adjuvant treatment, and benefits of treatment with respect to the rate of death from breast cancer. RESULTS The proportion of the total reduction in the rate of death from breast cancer attributed to screening varied in the seven models from 28 to 65 percent (median, 46 percent), with adjuvant treatment contributing the rest. The variability across models in the absolute contribution of screening was larger than it was for treatment, reflecting the greater uncertainty associated with estimating the benefit of screening. CONCLUSIONS Seven statistical models showed that both screening mammography and treatment have helped reduce the rate of death from breast cancer in the United States.

2,105 citations

Journal ArticleDOI
TL;DR: Breast cancer subtype analysis confirms the capacity of cancer registries to adjust national collection standards to produce clinically relevant data based on evolving medical knowledge.
Abstract: Background: The American Cancer Society (ACS), Centers for Disease Control and Prevention (CDC), National Cancer Institute (NCI), and North American Association of Central Cancer Registries (NAACCR) collaborate annually to produce updated, national cancer statistics. This Annual Report includes a focus on breast cancer incidence by subtype using new, national-level data. Methods: Population-based cancer trends and breast cancer incidence by molecular subtype were calculated. Breast cancer subtypes were classified using tumor biomarkers for hormone receptor (HR) and human growth factor-neu receptor (HER2) expression. Results: Overall cancer incidence decreased for men by 1.8% annually from 2007 to 2011. Rates for women were stable from 1998 to 2011. Within these trends there was racial/ethnic variation, and some sites have increasing rates. Among children, incidence rates continued to increase by 0.8% per year over the past decade while, like adults, mortality declined. Overall mortality has been declining for both men and women since the early 1990’s and for children since the 1970’s. HR+/HER2breast cancers, the subtype with the best prognosis, were the most common for all races/ethnicities with highest rates among non-Hispanic white women, local stage cases, and low poverty areas (92.7, 63.51, and 98.69 per 100 non-Hispanic white women, respectively). HR+/HER2- breast cancer incidence rates were strongly, positively correlated with mammography use, particularly for non-Hispanic white women (Pearson 0.57, two-sided P < .001). Triple-negative breast cancers, the subtype with the worst prognosis, were highest among non-Hispanic black women (27.2 per 100 000 non-Hispanic black women), which is reflected in high rates in southeastern states. Conclusions: Progress continues in reducing the burden of cancer in the United States. There are unique racial/ethnicspecific incidence patterns for breast cancer subtypes; likely because of both biologic and social risk factors, including variation in mammography use. Breast cancer subtype analysis confirms the capacity of cancer registries to adjust national collection standards to produce clinically relevant data based on evolving medical knowledge.

1,208 citations

Journal ArticleDOI
01 Jul 2018-Cancer
TL;DR: The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate to provide annual updates on cancer occurrence and trends in the United States.
Abstract: Background The American Cancer Society, the Centers for Disease Control and Prevention, the National Cancer Institute, and the North American Association of Central Cancer Registries collaborate to provide annual updates on cancer occurrence and trends in the United States. Methods Data on new cancer diagnoses during 2001 through 2016 were obtained from the Centers for Disease Control and Prevention-funded and National Cancer Institute-funded population-based cancer registry programs and compiled by the North American Association of Central Cancer Registries. Data on cancer deaths during 2001 through 2017 were obtained from the National Center for Health Statistics' National Vital Statistics System. Trends in incidence and death rates for all cancers combined and for the leading cancer types by sex, racial/ethnic group, and age were estimated by joinpoint analysis and characterized by the average annual percent change during the most recent 5 years (2012-2016 for incidence and 2013-2017 for mortality). Results Overall, cancer incidence rates decreased 0.6% on average per year during 2012 through 2016, but trends differed by sex, racial/ethnic group, and cancer type. Among males, cancer incidence rates were stable overall and among non-Hispanic white males but decreased in other racial/ethnic groups; rates increased for 5 of the 17 most common cancers, were stable for 7 cancers (including prostate), and decreased for 5 cancers (including lung and bronchus [lung] and colorectal). Among females, cancer incidence rates increased during 2012 to 2016 in all racial/ethnic groups, increasing on average 0.2% per year; rates increased for 8 of the 18 most common cancers (including breast), were stable for 6 cancers (including colorectal), and decreased for 4 cancers (including lung). Overall, cancer death rates decreased 1.5% on average per year during 2013 to 2017, decreasing 1.8% per year among males and 1.4% per year among females. During 2013 to 2017, cancer death rates decreased for all cancers combined among both males and females in each racial/ethnic group, for 11 of the 19 most common cancers among males (including lung and colorectal), and for 14 of the 20 most common cancers among females (including lung, colorectal, and breast). The largest declines in death rates were observed for melanoma of the skin (decreasing 6.1% per year among males and 6.3% among females) and lung (decreasing 4.8% per year among males and 3.7% among females). Among children younger than 15 years, cancer incidence rates increased an average of 0.8% per year during 2012 to 2016, and cancer death rates decreased an average of 1.4% per year during 2013 to 2017. Among adolescents and young adults aged 15 to 39 years, cancer incidence rates increased an average of 0.9% per year during 2012 to 2016, and cancer death rates decreased an average of 1.0% per year during 2013 to 2017. Conclusions Although overall cancer death rates continue to decline, incidence rates are leveling off among males and are increasing slightly among females. These trends reflect population changes in cancer risk factors, screening test use, diagnostic practices, and treatment advances. Many cancers can be prevented or treated effectively if they are found early. Population-based cancer incidence and mortality data can be used to inform efforts to decrease the cancer burden in the United States and regularly monitor progress toward goals.

1,117 citations

Journal ArticleDOI
TL;DR: Progress in reducing death rates and improving survival is limited for several cancer types, underscoring the need for intensified efforts to discover new strategies for prevention, early detection, and treatment and to apply proven preventive measures broadly and equitably.
Abstract: Background: The American Cancer Society (ACS), the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate to provide annual updates on cancer occurrence and trends in the United States. This Annual Report highlights survival rates. Methods: Data were from the CDC- and NCI-funded population-based cancer registry programs and compiled by NAACCR. Trends in age-standardized incidence and death rates for all cancers combined and for the leading cancer types by sex were estimated by joinpoint analysis and expressed as annual percent change. We used relative survival ratios and adjusted relative risk of death after a diagnosis of cancer (hazard ratios [HRs]) using Cox regression model to examine changes or differences in survival over time and by sociodemographic factors. Results: Overall cancer death rates from 2010 to 2014 decreased by 1.8% (95% confidence interval [CI] = –1.8 to –1.8) per year in men, by 1.4% (95% CI = –1.4 to –1.3) per year in women, and by 1.6% (95% CI = –2.0 to –1.3) per year in children. Death rates decreased for 11 of the 16 most common cancer types in men and for 13 of the 18 most common cancer types in women, including lung, colorectal, female breast, and prostate, whereas death rates increased for liver (men and women), pancreas (men), brain (men), and uterine cancers. In contrast, overall incidence rates from 2009 to 2013 decreased by 2.3% (95% CI = –3.1 to –1.4) per year in men but stabilized in women. For several but not all cancer types, survival statistically significantly improved over time for both early and late-stage diseases. Between 1975 and 1977, and 2006 and 2012, for example, five-year relative survival for distant-stage disease statistically significantly increased from 18.7% (95% CI = 16.9% to 20.6%) to 33.6% (95% CI = 32.2% to 35.0%) for female breast cancer but not for liver cancer (from 1.1%, 95% CI = 0.3% to 2.9%, to 2.3%, 95% CI = 1.6% to 3.2%). Survival varied by race/ethnicity and state. For example, the adjusted relative risk of death for all cancers combined was 33% (HR = 1.33, 95% CI = 1.32 to 1.34) higher in non-Hispanic blacks and 51% (HR = 1.51, 95% CI = 1.46 to 1.56) higher in non-Hispanic American Indian/Alaska Native compared with non-Hispanic whites. Conclusions: Cancer death rates continue to decrease in the United States. However, progress in reducing death rates and improving survival is limited for several cancer types, underscoring the need for intensified efforts to discover new strategies for prevention, early detection, and treatment and to apply proven preventive measures broadly and equitably.

1,103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations

Journal ArticleDOI
TL;DR: Slow momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers, and it is notable that long‐term rapid increases in liver cancer mortality have attenuated in women and stabilized in men.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.

15,080 citations