scispace - formally typeset
Search or ask a question
Author

Kathleen Belanger

Other affiliations: University of Rochester
Bio: Kathleen Belanger is an academic researcher from Yale University. The author has contributed to research in topics: Asthma & Pregnancy. The author has an hindex of 47, co-authored 102 publications receiving 7277 citations. Previous affiliations of Kathleen Belanger include University of Rochester.


Papers
More filters
Journal ArticleDOI
TL;DR: Among primary cesarean deliveries, more subjective indications (nonreassuring fetal status and arrest of dilation) contributed larger proportions than more objective indications (malpresentation, maternal-fetal, and obstetric conditions).

564 citations

Journal ArticleDOI
08 Oct 2003-JAMA
TL;DR: Asthmatic children using maintenance medication are particularly vulnerable to ozone, controlling for exposure to fine particles, at levels below EPA standards.
Abstract: ContextExposure to ozone and particulate matter of 2.5 µm or less (PM2.5) in air at levels above current US Environmental Protection Agency (EPA) standards is a risk factor for respiratory symptoms in children with asthma.ObjectiveTo examine simultaneous effects of ozone and PM2.5 at levels below EPA standards on daily respiratory symptoms and rescue medication use among children with asthma.Design, Setting, and ParticipantsDaily respiratory symptoms and medication use were examined prospectively for 271 children younger than 12 years with physician-diagnosed, active asthma residing in southern New England. Exposure to ambient concentrations of ozone and PM2.5 from April 1 through September 30, 2001, was assessed using ozone (peak 1-hour and 8-hour) and 24-hour PM2.5. Logistic regression analyses using generalized estimating equations were performed separately for maintenance medication users (n = 130) and nonusers (n = 141). Associations between pollutants (adjusted for temperature, controlling for same- and previous-day levels) and respiratory symptoms and use of rescue medication were evaluated.Main Outcome MeasuresRespiratory symptoms and rescue medication use recorded on calendars by subjects' mothers.ResultsMean (SD) levels were 59 (19) ppb (1-hour average) and 51 (16) ppb (8-hour average) for ozone and 13 (8) µg/m3 for PM2.5. In copollutant models, ozone level but not PM2.5 was significantly associated with respiratory symptoms and rescue medication use among children using maintenance medication; a 50-ppb increase in 1-hour ozone was associated with increased likelihood of wheeze (by 35%) and chest tightness (by 47%). The highest levels of ozone (1-hour or 8-hour averages) were associated with increased shortness of breath and rescue medication use. No significant, exposure-dependent associations were observed for any outcome by any pollutant among children who did not use maintenance medication.ConclusionAsthmatic children using maintenance medication are particularly vulnerable to ozone, controlling for exposure to fine particles, at levels below EPA standards.

448 citations

Journal ArticleDOI
TL;DR: Results indicate that exposure to air pollution, even at low levels, may increase risk of low birth weight, particularly for some segments of the population.
Abstract: Low birth weight is an important predictor of children’s health and is associated with higher risk of infant and childhood mortality (McCormick 1985), coronary heart disease (Vos et al. 2006), and other health problems (Ashdown-Lambert 2005). For example, in a cohort of 10,803 singleton births, Lawlor et al. (2005a) found an inverse relationship between birth weight and coronary heart disease and stroke. Identified risk factors for low birth weight include mother’s age (Khoshnood et al. 2005), prenatal care (Shi et al. 2004), maternal smoking and educational status (Kleinman and Madans 1985), race (Alexander et al. 2003), and socioeconomic factors (Valero de Bernabe et al. 2004). Several studies examined whether maternal exposure to air pollution adversely impacts birth outcomes, such as low birth weight, preterm delivery, intrauterine growth restriction, and postneonatal infant mortality (Glinianaia et al. 2004; Maisonet et al. 2004; Sram et al. 2005; Woodruff et al. 2006). Results regarding the relationship between air pollution and birth weight are inconclusive, with some studies identifying associations where others did not, and the suite of adverse pollutants and exposure periods differing by study. For instance, higher levels of carbon monoxide were associated with low birth weight in southern California; six Northeastern U.S. cities; Sao Paulo, Brazil; Sydney, Australia; and Seoul, South Korea (Gouveia et al. 2004; Ha et al. 2001; Maisonet et al. 2001; Mannes et al. 2005; Ritz et al. 2000; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). However no association was identified in studies based in the Czech Republic, Taiwan, Nevada, and California (Bobak 2000; Chen et al. 2002; Lin et al. 2004; Parker et al. 2005). Particulate matter (PM) with an aerodynamic diameter < 10 μm (PM10) was linked with low birth weight in Sao Paulo, Southern California, Taiwan, the Czech republic, and Seoul (Dejmek et al. 1999; Gouveia et al. 2004; Ha et al. 2001; Wilhelm and Ritz 2005; Yang et al. 2003), with no such evidence provided by other work in Taiwan and six U.S. cities (Lin et al. 2004; Maisonet et al. 2001) and limited evidence in Nova Scotia, Canada (Dugandzic et al. 2006). Three recent reviews summarized scientific evidence regarding the association between air pollution and birth weight. One review concluded that the effects of air pollution on low birth weight are not fully apparent and that current scientific knowledge is limited (Maisonet et al. 2004). Another determined that PM has either a small effect on fetal growth or no effect, and recommended further research (Glinianaia et al. 2004). The most recent review concluded that existing literature supports a causal link between air pollution and birth weight, although additional research is needed to confirm the effect, investigate the exposure window of importance, and distinguish which pollutants cause harm (Sram et al. 2005). The seemingly conflicting evidence may result from inadequate control for confounders, variation in populations and pollution characteristics, or differences in study design such as modeling structure, exposure time frame, and sample size. Residential mobility may differ by study population, resulting in varying levels of exposure misclassification. Effect estimates for PM and mortality and hospital admissions show spatial and temporal heterogeneity, which may be related to dissimilar chemical composition. In particular, the risk of cardiovascular admissions for the elderly from PM with an aerodynamic diameter < 2.5 μm (PM2.5) is higher in the eastern United States, including the Northeast region (Dominici et al. 2006), and mortality effects of PM10 are strongest in the northeastern United States (Peng et al. 2005). Variation in PM composition may partially explain differing results from studies of PM and low birth weight. Many study areas for air pollution and birth weight research are outside the United States, such as those areas listed above as well as Lithuania (Maroziene and Grazuleviciene 2002), Zimbabwe (Mishra et al. 2004), Canada (Liu et al. 2003), Croatia (Mohorovic 2004), Poland (Jedrychowski et al. 2004), and China (Wang et al. 1997). Of the U.S.-based studies, most focused on Southern California (Basu et al. 2004; Parker et al. 2005; Ritz and Yu 1999; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). Only one study investigated the northeastern United States, using births from six cities over a 3-year period, and found adverse effects of CO and sulfur dioxide, but not PM10 (Maisonet et al. 2001). To the best of our knowledge, no previous study explored the impacts of nitrogen dioxide or fine PM (PM2.5) on birth weight in the northeastern United States. In this research we investigated the effects of air pollution on birth weight in Connecticut and Massachusetts over a 4-year period for SO2, NO2, CO, PM10, and PM2.5 and explored effects by gestational and trimester exposure and by race.

387 citations

Journal ArticleDOI
TL;DR: The prevalence of asthma during pregnancy in the United States may be higher than previously estimated and appears to be continuing to increase.

277 citations

Journal ArticleDOI
TL;DR: The results show that early antibiotic use was associated with asthma and allergy at 6 years of age, and that protopathic bias was unlikely to account for the main findings.
Abstract: Many studies have reported that antibiotic use may be associated with increased risk of childhood asthma. Respiratory tract infections in small children may be difficult to distinguish from early symptoms of asthma, and studies may have been confounded by ‘‘protopathic’’ bias, where antibiotics are used to treat early symptoms of asthma. These analyses of a cohort including 1,401 US children assess the association between antibiotic use within the first 6 months of life and asthma and allergy at 6 years of age between 2003 and 2007. Antibiotic exposure was associated with increased risk of asthma (adjusted odds ratio ¼ 1.52, 95% confidence interval (CI): 1.07, 2.16). The odds ratio if asthma was first diagnosed after 3 years of age was 1.66 (95% CI: 0.99, 2.79) and, in children with no history of lower respiratory infection in the first year of life, the odds ratio was 1.66 (95% CI: 1.12, 3.46). The adverse effect of antibiotics was particularly strong in children with no family history of asthma (odds ratio ¼ 1.89, 95% CI: 1.00, 3.58) (Pinteraction ¼ 0.03). The odds ratio for a positive allergy blood or skin test was 1.59 (95% CI: 1.10, 2.28). The results show that early antibiotic use was associated with asthma and allergy at 6 years of age, and that protopathic bias was unlikely to account for the main findings.

243 citations


Cited by
More filters
Journal Article
TL;DR: The International Commission on Non-Ionizing Radiation Protection (ICNIRP)—was established as a successor to the IRPA/INIRC, which developed a number of health criteria documents on NIR as part of WHO’s Environmental Health Criteria Programme, sponsored by the United Nations Environment Programme (UNEP).
Abstract: IN 1974, the International Radiation Protection Association (IRPA) formed a working group on non-ionizing radiation (NIR), which examined the problems arising in the field of protection against the various types of NIR. At the IRPA Congress in Paris in 1977, this working group became the International Non-Ionizing Radiation Committee (INIRC). In cooperation with the Environmental Health Division of the World Health Organization (WHO), the IRPA/INIRC developed a number of health criteria documents on NIR as part of WHO’s Environmental Health Criteria Programme, sponsored by the United Nations Environment Programme (UNEP). Each document includes an overview of the physical characteristics, measurement and instrumentation, sources, and applications of NIR, a thorough review of the literature on biological effects, and an evaluation of the health risks of exposure to NIR. These health criteria have provided the scientific database for the subsequent development of exposure limits and codes of practice relating to NIR. At the Eighth International Congress of the IRPA (Montreal, 18–22 May 1992), a new, independent scientific organization—the International Commission on Non-Ionizing Radiation Protection (ICNIRP)—was established as a successor to the IRPA/INIRC. The functions of the Commission are to investigate the hazards that may be associated with the different forms of NIR, develop international guidelines on NIR exposure limits, and deal with all aspects of NIR protection. Biological effects reported as resulting from exposure to static and extremely-low-frequency (ELF) electric and magnetic fields have been reviewed by UNEP/ WHO/IRPA (1984, 1987). Those publications and a number of others, including UNEP/WHO/IRPA (1993) and Allen et al. (1991), provided the scientific rationale for these guidelines. A glossary of terms appears in the Appendix.

4,549 citations

Journal ArticleDOI
Jean Bousquet, N. Khaltaev, Alvaro A. Cruz1, Judah A. Denburg2, W. J. Fokkens3, Alkis Togias4, T. Zuberbier5, Carlos E. Baena-Cagnani6, Giorgio Walter Canonica7, C. van Weel8, Ioana Agache9, Nadia Aït-Khaled, Claus Bachert10, Michael S. Blaiss11, Sergio Bonini12, L.-P. Boulet13, Philippe-Jean Bousquet, Paulo Augusto Moreira Camargos14, K-H. Carlsen15, Y. Z. Chen, Adnan Custovic16, Ronald Dahl17, Pascal Demoly, H. Douagui, Stephen R. Durham18, R. Gerth van Wijk19, O. Kalayci19, Michael A. Kaliner20, You Young Kim21, Marek L. Kowalski, Piotr Kuna22, L. T. T. Le23, Catherine Lemière24, Jing Li25, Richard F. Lockey26, S. Mavale-Manuel26, Eli O. Meltzer27, Y. Mohammad28, J Mullol, Robert M. Naclerio29, Robyn E O'Hehir30, K. Ohta31, S. Ouedraogo31, S. Palkonen, Nikolaos G. Papadopoulos32, Gianni Passalacqua7, Ruby Pawankar33, Todor A. Popov34, Klaus F. Rabe35, J Rosado-Pinto36, G. K. Scadding37, F. E. R. Simons38, Elina Toskala39, E. Valovirta40, P. Van Cauwenberge10, De Yun Wang41, Magnus Wickman42, Barbara P. Yawn43, Arzu Yorgancioglu44, Osman M. Yusuf, H. J. Zar45, Isabella Annesi-Maesano46, E.D. Bateman45, A. Ben Kheder47, Daniel A. Boakye48, J. Bouchard, Peter Burney18, William W. Busse49, Moira Chan-Yeung50, Niels H. Chavannes35, A.G. Chuchalin, William K. Dolen51, R. Emuzyte52, Lawrence Grouse53, Marc Humbert, C. M. Jackson54, Sebastian L. Johnston18, Paul K. Keith2, James P. Kemp27, J. M. Klossek55, Désirée Larenas-Linnemann55, Brian J. Lipworth54, Jean-Luc Malo24, Gailen D. Marshall56, Charles K. Naspitz57, K. Nekam, Bodo Niggemann58, Ewa Nizankowska-Mogilnicka59, Yoshitaka Okamoto60, M. P. Orru61, Paul Potter45, David Price62, Stuart W. Stoloff63, Olivier Vandenplas, Giovanni Viegi, Dennis M. Williams64 
Federal University of Bahia1, McMaster University2, University of Amsterdam3, National Institutes of Health4, Charité5, Catholic University of Cordoba6, University of Genoa7, Radboud University Nijmegen8, Transilvania University of Brașov9, Ghent University10, University of Tennessee Health Science Center11, University of Naples Federico II12, Laval University13, Universidade Federal de Minas Gerais14, University of Oslo15, University of Manchester16, Aarhus University17, Imperial College London18, Erasmus University Rotterdam19, George Washington University20, Seoul National University21, Medical University of Łódź22, Hai phong University Of Medicine and Pharmacy23, Université de Montréal24, Guangzhou Medical University25, University of South Florida26, University of California, San Diego27, University of California28, University of Chicago29, Monash University30, Teikyo University31, National and Kapodistrian University of Athens32, Nippon Medical School33, Sofia Medical University34, Leiden University35, Leiden University Medical Center36, University College London37, University of Manitoba38, University of Helsinki39, Finnish Institute of Occupational Health40, National University of Singapore41, Karolinska Institutet42, University of Minnesota43, Celal Bayar University44, University of Cape Town45, Pierre-and-Marie-Curie University46, Tunis University47, University of Ghana48, University of Wisconsin-Madison49, University of British Columbia50, Georgia Regents University51, Vilnius University52, University of Washington53, University of Dundee54, University of Poitiers55, University of Mississippi56, Federal University of São Paulo57, German Red Cross58, Jagiellonian University Medical College59, Chiba University60, American Pharmacists Association61, University of Aberdeen62, University of Nevada, Reno63, University of North Carolina at Chapel Hill64
01 Apr 2008-Allergy
TL;DR: The ARIA guidelines for the management of allergic rhinitis and asthma are similar in both the 1999 ARIA workshop report and the 2008 Update as discussed by the authors, but the GRADE approach is not yet available.
Abstract: Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure by an IgE-mediated inflammation of the membranes lining the nose. It is a global health problem that causes major illness and disability worldwide. Over 600 million patients from all countries, all ethnic groups and of all ages suffer from allergic rhinitis. It affects social life, sleep, school and work and its economic impact is substantial. Risk factors for allergic rhinitis are well identified. Indoor and outdoor allergens as well as occupational agents cause rhinitis and other allergic diseases. The role of indoor and outdoor pollution is probably very important, but has yet to be fully understood both for the occurrence of the disease and its manifestations. In 1999, during the Allergic Rhinitis and its Impact on Asthma (ARIA) WHO workshop, the expert panel proposed a new classification for allergic rhinitis which was subdivided into 'intermittent' or 'persistent' disease. This classification is now validated. The diagnosis of allergic rhinitis is often quite easy, but in some cases it may cause problems and many patients are still under-diagnosed, often because they do not perceive the symptoms of rhinitis as a disease impairing their social life, school and work. The management of allergic rhinitis is well established and the ARIA expert panel based its recommendations on evidence using an extensive review of the literature available up to December 1999. The statements of evidence for the development of these guidelines followed WHO rules and were based on those of Shekelle et al. A large number of papers have been published since 2000 and are extensively reviewed in the 2008 Update using the same evidence-based system. Recommendations for the management of allergic rhinitis are similar in both the ARIA workshop report and the 2008 Update. In the future, the GRADE approach will be used, but is not yet available. Another important aspect of the ARIA guidelines was to consider co-morbidities. Both allergic rhinitis and asthma are systemic inflammatory conditions and often co-exist in the same patients. In the 2008 Update, these links have been confirmed. The ARIA document is not intended to be a standard-of-care document for individual countries. It is provided as a basis for physicians, health care professionals and organizations involved in the treatment of allergic rhinitis and asthma in various countries to facilitate the development of relevant local standard-of-care documents for patients.

3,769 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

Journal ArticleDOI
01 May 2008-Thorax
TL;DR: These guidelines have been replaced by British Guideline on the Management of Asthma.
Abstract: These guidelines have been replaced by British Guideline on the Management of Asthma. A national clinical guideline. Superseded By 2012 Revision Of 2008 Guideline: British Guideline on the Management of Asthma. Thorax 2008 May; 63(Suppl 4): 1–121.

1,475 citations