scispace - formally typeset
Search or ask a question
Author

Kathryn L. Mills

Bio: Kathryn L. Mills is an academic researcher from University of Oregon. The author has contributed to research in topics: Psychology & Cognition. The author has an hindex of 23, co-authored 57 publications receiving 4611 citations. Previous affiliations of Kathryn L. Mills include University College London & Oregon Health & Science University.


Papers
More filters
Journal ArticleDOI
TL;DR: The functional and structural changes occurring in the brain during this period of life and how they relate to navigating the social environment are described.
Abstract: Adolescence is a period of formative biological and social transition. Social cognitive processes involved in navigating increasingly complex and intimate relationships continue to develop throughout adolescence. Here, we describe the functional and structural changes occurring in the brain during this period of life and how they relate to navigating the social environment. Areas of the social brain undergo both structural changes and functional reorganization during the second decade of life, possibly reflecting a sensitive period for adapting to one's social environment. The changes in social environment that occur during adolescence might interact with increasing executive functions and heightened social sensitivity to influence a number of adolescent behaviors. We discuss the importance of considering the social environment and social rewards in research on adolescent cognition and behavior. Finally, we speculate about the potential implications of this research for society.

1,138 citations

Journal ArticleDOI
TL;DR: The results help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related.
Abstract: Before we can assess and interpret how developmental changes in human brain structure relate to cognition, affect, and motivation, and how these processes are perturbed in clinical or at-risk populations, we must first precisely understand typical brain development and how changes in different structural components relate to each other. We conducted a multisample magnetic resonance imaging study to investigate the development of cortical volume, surface area, and thickness, as well as their inter-relationships, from late childhood to early adulthood (7-29 years) using four separate longitudinal samples including 388 participants and 854 total scans. These independent datasets were processed and quality-controlled using the same methods, but analyzed separately to study the replicability of the results across sample and image-acquisition characteristics. The results consistently showed widespread and regionally variable nonlinear decreases in cortical volume and thickness and comparably smaller steady decreases in surface area. Further, the dominant contributor to cortical volume reductions during adolescence was thinning. Finally, complex regional and topological patterns of associations between changes in surface area and thickness were observed. Positive relationships were seen in sulcal regions in prefrontal and temporal cortices, while negative relationships were seen mainly in gyral regions in more posterior cortices. Collectively, these results help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related.SIGNIFICANCE STATEMENT Different measures of brain anatomy develop differently across adolescence. Their precise trajectories and how they relate to each other throughout development are important to know if we are to fully understand both typical development and disorders involving aberrant brain development. However, our understanding of such trajectories and relationships is still incomplete. To provide accurate characterizations of how different measures of cortical structure develop, we performed an MRI investigation across four independent datasets. The most profound anatomical change in the cortex during adolescence was thinning, with the largest decreases observed in the parietal lobe. There were complex regional patterns of associations between changes in surface area and thickness, with positive relationships seen in sulcal regions in prefrontal and temporal cortices, and negative relationships seen mainly in gyral regions in more posterior cortices.

485 citations

Journal ArticleDOI
TL;DR: Fundamental connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes, and resting-state functional connectivity MRI data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.
Abstract: In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for "micro-movements," and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.

460 citations

Journal ArticleDOI
TL;DR: It is shown that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences, and some best practices for statistical control of cranial volume and brain size in future studies are suggested.

406 citations

Journal ArticleDOI
TL;DR: A significant role for puberty in structural brain development is suggested for the amygdala, hippocampus and corpus striatum including the nucleus accumbens, caudate, putamen and globus pallidus in both sexes.

399 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The brain's default mode network plays a central role in this work and consistently decreases its activity when compared with activity during these relaxed nontask states.
Abstract: The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease. The brain's default mode network plays a central role in this work.

2,506 citations

Journal ArticleDOI
TL;DR: The newly developed toolbox, DPABI, which was evolved from REST and DPARSF is introduced, designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies.
Abstract: Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

2,179 citations

01 Jan 2016
TL;DR: This application applied longitudinal data analysis modeling change and event occurrence will help people to enjoy a good book with a cup of coffee in the afternoon instead of facing with some infectious virus inside their computer.
Abstract: Thank you very much for downloading applied longitudinal data analysis modeling change and event occurrence. As you may know, people have look hundreds times for their favorite novels like this applied longitudinal data analysis modeling change and event occurrence, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious virus inside their computer.

2,102 citations

Journal ArticleDOI
TL;DR: This Commission outlines the opportunities and challenges for investment in adolescent health and wellbeing at both country and global levels (panel 1).

1,976 citations