scispace - formally typeset
Search or ask a question
Author

Katja Lindenberg

Bio: Katja Lindenberg is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Random walk & Polaron. The author has an hindex of 51, co-authored 349 publications receiving 9340 citations. Previous affiliations of Katja Lindenberg include La Jolla Institute for Allergy and Immunology & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), it is found in the limit of low dissipation that η* is bounded from above by η C/(2-ηC) and from below by εC/2.
Abstract: We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-√Tc/Th] is recovered.

430 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derive an exact expression for the entropy of a finite system placed in contact with one or several finite reservoirs, each of which is initially described by a canonical equilibrium distribution.
Abstract: We derive an exact (classical and quantum) expression for the entropy production of a finite system placed in contact with one or several finite reservoirs, each of which is initially described by a canonical equilibrium distribution. Although the total entropy of system plus reservoirs is conserved, we show that system entropy production is always positive and is a direct measure of system–reservoir correlations and/or entanglements. Using an exactly solvable quantum model, we illustrate our novel interpretation of the Second Law in a microscopically reversible finite-size setting, with strong coupling between the system and the reservoirs. With this model, we also explicitly show the approach of our exact formulation to the standard description of irreversibility in the limit of a large reservoir.

400 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the efficiency of power generation by thermochemical engines for strong coupling between the particle and heat flows and showed that the efficiency at maximum power displays universality up to quadratic order in the deviation from equilibrium.
Abstract: We investigate the efficiency of power generation by thermochemical engines. For strong coupling between the particle and heat flows and in the presence of a left-right symmetry in the system, we demonstrate that the efficiency at maximum power displays universality up to quadratic order in the deviation from equilibrium. A maser model is presented to illustrate our argument.

314 citations

Journal ArticleDOI
TL;DR: The reaction front for the process A+B-->C in which the reagents move subdiffusively is studied, based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process.
Abstract: We study the reaction front for the process A+B-->C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular, its unusual behavior at the center of the reaction zone.

279 citations

Journal ArticleDOI
01 Mar 2009-EPL
TL;DR: In this paper, the authors identify the operational conditions for maximum power of a nanothermoelectric engine consisting of a single quantum level embedded between two leads at different temperatures and chemical potentials.
Abstract: We identify the operational conditions for maximum power of a nanothermoelectric engine consisting of a single quantum level embedded between two leads at different temperatures and chemical potentials. The corresponding thermodynamic efficiency agrees with the Curzon-Ahlborn expression up to quadratic terms in the gradients, supporting the thesis of universality beyond linear response.

271 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations