scispace - formally typeset
Search or ask a question
Author

Katrin Ravenschlag

Bio: Katrin Ravenschlag is an academic researcher from Max Planck Society. The author has contributed to research in topics: Anaerobic oxidation of methane & Methanogenesis. The author has an hindex of 6, co-authored 6 publications receiving 3396 citations.

Papers
More filters
Journal ArticleDOI
05 Oct 2000-Nature
TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Abstract: A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments. Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles, radiotracer experiments and stable carbon isotope data. But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria. Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.

2,679 citations

Journal ArticleDOI
TL;DR: The total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones, suggesting a predominance of sequences related to bacteria of the sulfur cycle.
Abstract: A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the g subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. Coastal and shelf sediments play a significant role in the remineralization of organic matter. In shelf areas, an estimated 32 to 46% of the primary production settles to the sea floor (54). While part of it is permanently buried, the majority of this detrital material is reoxidized, mainly through the action of prokaryotes (54). Steep redox gradients provide niches for a wide variety of metabolically diverse microorganisms, and O2, NO3 2 , manganese and iron oxides, and SO4 22 have been identified as the most important electron acceptors in marine sediments (3, 19). The various processes of microbial carbon mineralization can be quantified by tracer techniques, and their importance for biogeochemical cycles in the marine environment is recognized; however, little is known about the microbial community responsible for them. Few cultivation-independent studies of microbial diversity in marine sediments have been conducted (6, 15, 22, 43). The sequences recovered in these studies revealed the presence of mainly unknown organisms only distantly related to known isolates. To further uncover microbial diversity in marine shelf sediments and to identify potentially dominant groups in this habitat, we constructed a 16S ribosomal DNA (rDNA) clone library using general bacterial primers to amplify the almost complete gene. The screening process was tested by statistical analysis to evaluate whether we had covered total diversity in our clone library by screening 353 clones. Species diversity can be considered to be composed of two components: species richness (the number of species in a community) and species evenness (the distribution of levels of abundance among the species). Two types of analyses have been used to assess diversity. Rarefaction is a statistical technique for different applications in an ecological context and gives an estimation of the decrease in apparent species richness of a community with decreasing sub

386 citations

Journal ArticleDOI
TL;DR: The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment was characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes.
Abstract: The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburgfjorden, Svalbard) was characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes. The SRB community was dominated by members of the Desulfosarcina-Desulfococcus group. This group accounted for up to 73% of the SRB detected and up to 70% of the SRB rRNA detected. The predominance was shown to be a common feature for different stations along the coast of Svalbard. In a top-to-bottom approach we aimed to further resolve the composition of this large group of SRB by using probes for cultivated genera. While this approach failed, directed cloning of probe-targeted genes encoding 16S rRNA was successful and resulted in sequences which were all affiliated with the Desulfosarcina-Desulfococcus group. A group of clone sequences (group SVAL1) most closely related to Desulfosarcina variabilis (91.2% sequence similarity) was dominant and was shown to be most abundant in situ, accounting for up to 54.8% of the total SRB detected. A comparison of the two methods used for quantification showed that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5 mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface. Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell 21 day 21 ), decreased by a factor of 3 within the first 2 cm, and were relatively constant in deeper layers.

280 citations

Journal ArticleDOI
TL;DR: The hypothesis that δ-proteobacterial sulfate-reducing bacteria and members of the Cytophaga-Flavobacterium cluster are indigenous to the anoxic zones of marine sediments is supported.
Abstract: Fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization with 16S rRNA-targeted oligonucleotide probes were used to investigate the phylogenetic composition of a marine Arctic sediment (Svalbard). FISH resulted in the detection of a large fraction of microbes living in the top 5 cm of the sediment. Up to 65.4% ± 7.5% of total DAPI (4′,6′-diamidino-2-phenylindole) cell counts hybridized to the bacterial probe EUB338, and up to 4.9% ± 1.5% hybridized to the archaeal probe ARCH915. Besides δ-proteobacterial sulfate-reducing bacteria (up to 16% 52) members of the Cytophaga-Flavobacterium cluster were the most abundant group detected in this sediment, accounting for up to 12.8% of total DAPI cell counts and up to 6.1% of prokaryotic rRNA. Furthermore, members of the order Planctomycetales accounted for up to 3.9% of total cell counts. In accordance with previous studies, these findings support the hypothesis that these bacterial groups are not simply settling with organic matter from the pelagic zone but are indigenous to the anoxic zones of marine sediments. Members of the γ-proteobacteria also constituted a significant fraction in this sediment (6.1% ± 2.5% of total cell counts, 14.4% ± 3.6% of prokaryotic rRNA). A new probe (GAM660) specific for sequences affiliated with free-living or endosymbiotic sulfur-oxidizing bacteria was developed. A significant number of cells was detected by this probe (2.1% ± 0.7% of total DAPI cell counts, 13.2% ± 4.6% of prokaryotic rRNA), showing no clear zonation along the vertical profile. Gram-positive bacteria and the β-proteobacteria were near the detection limit in all sediments.

254 citations

01 Jan 2000
TL;DR: In this paper, the authors provided microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which were identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Abstract: 1 . Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles 2 , radiotracer experiments 3 and stable carbon isotope data 4 . But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria 5-7 . Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane- based sulphate reduction, and apparently mediate anaerobic oxidation of methane. At the Cascadia convergent margin off the coast of Oregon, discrete methane hydrate layers are exposed at the sea floor, at a water depth of 600-800 m that corresponds to the hydrate stability limit 8 . These hydrate layers are formed from gaseous methane

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
Abstract: We introduce here a new method for computing differences between microbial communities based on phylogenetic information. This method, UniFrac, measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both. UniFrac can be used to determine whether communities are significantly different, to compare many communities simultaneously using clustering and ordination techniques, and to measure the relative contributions of different factors, such as chemistry and geography, to similarities between samples. We demonstrate the utility of UniFrac by applying it to published 16S rRNA gene libraries from cultured isolates and environmental clones of bacteria in marine sediment, water, and ice. Our results reveal that (i) cultured isolates from ice, water, and sediment resemble each other and environmental clone sequences from sea ice, but not environmental clone sequences from sediment and water; (ii) the geographical location does not correlate strongly with bacterial community differences in ice and sediment from the Arctic and Antarctic; and (iii) bacterial communities differ between terrestrially impacted seawater (whether polar or temperate) and warm oligotrophic seawater, whereas those in individual seawater samples are not more similar to each other than to those in sediment or ice samples. These results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.

6,679 citations

Journal ArticleDOI
TL;DR: It is shown that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment.
Abstract: The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This "rare biosphere" is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earth's history, may have had a profound impact on shaping planetary processes.

3,535 citations

Journal ArticleDOI
05 Oct 2000-Nature
TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Abstract: A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments. Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles, radiotracer experiments and stable carbon isotope data. But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria. Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.

2,679 citations

MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations

Journal ArticleDOI
TL;DR: Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.
Abstract: ▪ Abstract Since the delineation of 12 bacterial phyla by comparative phylogenetic analyses of 16S ribosomal RNA in 1987 knowledge of microbial diversity has expanded dramatically owing to the sequencing of ribosomal RNA genes cloned from environmental DNA. Currently, only 26 of the approximately 52 identifiable major lineages, or phyla, within the domain Bacteria have cultivated representatives. Evidence from field studies indicates that many of the uncultivated phyla are found in diverse habitats, and some are extraordinarily abundant. In some important environments, including seawater, freshwater, and soil, many biologically and geochemically important organisms are at best only remotely related to any strain that has been characterized by phenotype or by genome sequencing. Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.

1,938 citations