scispace - formally typeset
Search or ask a question
Author

Katsuhiko Nosho

Bio: Katsuhiko Nosho is an academic researcher from Sapporo Medical University. The author has contributed to research in topics: Colorectal cancer & Cancer. The author has an hindex of 62, co-authored 151 publications receiving 12425 citations. Previous affiliations of Katsuhiko Nosho include St. Marianna University School of Medicine & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings from this molecular pathological epidemiology study suggest that the PIK3CA mutation in colorectal cancer may serve as a predictive molecular biomarker for adjuvant aspirin therapy.
Abstract: A B S T R AC T BACKGROUND Regular use of aspirin after a diagnosis of colon cancer has been associated with a superior clinical outcome. Experimental evidence suggests that inhibition of prostaglandin-endoperoxide synthase 2 (PTGS2) (also known as cyclooxygenase-2) by aspirin down-regulates phosphatidylinositol 3-kinase (PI3K) signaling activity. We hypothesized that the effect of aspirin on survival and prognosis in patients with cancers characterized by mutated PIK3CA (the phosphatidylinositol-4,5-bisphosphonate 3-kinase, catalytic subunit alpha polypeptide gene) might differ from the effect among those with wild-type PIK3CA cancers. METHODS We obtained data on 964 patients with rectal or colon cancer from the Nurses’ Health Study and the Health Professionals Follow-up Study, including data on aspirin use after diagnosis and the presence or absence of PIK3CA mutation. We used a Cox proportional-hazards model to compute the multivariate hazard ratio for death. We examined tumor markers, including PTGS2, phosphorylated AKT, KRAS, BRAF, microsatellite instability, CpG island methylator phenotype, and methylation of long interspersed nucleotide element 1. RESULTS Among patients with mutated-PIK3CA colorectal cancers, regular use of aspirin after diagnosis was associated with superior colorectal cancer–specific survival (multivari ate hazard ratio for cancer-related death, 0.18; 95% confidence interval [CI], 0.06 to 0.61; P<0.001 by the log-rank test) and overall survival (multivariate hazard ratio for death from any cause, 0.54; 95% CI, 0.31 to 0.94; P = 0.01 by the log-rank test). In contrast, among patients with wild-type PIK3CA, regular use of aspirin after diagnosis was not associated with colorectal cancer–specific survival (multivariate hazard ratio, 0.96; 95% CI, 0.69 to 1.32; P = 0.76 by the log-rank test; P = 0.009 for interaction between aspirin and PIK3CA variables) or overall survival (multivariate hazard ratio, 0.94; 95% CI, 0.75 to 1.17; P = 0.96 by the log-rank test; P = 0.07 for interaction). CONCLUSIONS Regular use of aspirin after diagnosis was associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wildtype PIK3CA cancer. The findings from this molecular pathological epidemiology study suggest that the PIK3CA mutation in colorectal cancer may serve as a predictive molecular biomarker for adjuvant aspirin therapy. (Funded by The National Institutes of Health and others.)

740 citations

Journal ArticleDOI
01 Jan 2009-Gut
TL;DR: CIMP-high appears to be an independent predictor of a low colon cancer-specific mortality, while BRAF mutation is associated with a high colon cancerThe relation between CIMP and lower mortality appeared to be consistent across all stages.
Abstract: Background: The CpG island methylator phenotype (CIMP), characterised by widespread promoter methylation, is associated with microsatellite instability (MSI) and BRAF mutation in colorectal cancer. The independent effect of CIMP, MSI and BRAF mutation on prognosis remains uncertain. Methods: Utilising 649 colon cancers (stage I–IV) in two independent cohort studies, we quantified DNA methylation in eight CIMP-specific promoters ( CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1 , NEUROG1, RUNX3 and SOCS1 ) as well as CHFR, HIC1 , IGFBP3 , MGMT , MINT1, MINT31, p14, and WRN by using MethyLight technology. We examined MSI, KRAS and BRAF status. Cox proportional hazard models computed hazard ratios (HRs) for colon cancer-specific and overall mortalities, adjusting for patient characteristics and tumoral molecular features. Results: After adjustment for other predictors of patient survival, patients with CIMP-high cancers (126 (19%) tumours with ⩾6/8 methylated CIMP-specific promoters) experienced a significantly low colon cancer-specific mortality (multivariate HR 0.44, 95% confidence interval (CI) 0.22 to 0.88), whereas the BRAF mutation was significantly associated with a high cancer-specific mortality (multivariate HR 1.97, 95% CI 1.13 to 3.42). A trend toward a low cancer-specific mortality was observed for MSI-high tumours (multivariate HR 0.70, 95% CI 0.36 to 1.37). In stratified analyses, CIMP-high tumours were associated with a significant reduction in colon cancer-specific mortality, regardless of both MSI and BRAF status. The relation between CIMP-high and lower mortality appeared to be consistent across all stages. KRAS mutation was unrelated to prognostic significance. Conclusion: CIMP-high appears to be an independent predictor of a low colon cancer-specific mortality, while BRAF mutation is associated with a high colon cancer-specific mortality.

733 citations

Journal ArticleDOI
TL;DR: It was found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes, memory T cells, and CRC-specific survival and positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors.

693 citations

Journal ArticleDOI
TL;DR: T tumour‐infiltrating CD45RO+‐cell density is a prognostic biomarker associated with longer survival of colorectal cancer patients, independent of clinical, pathological, and molecular features.
Abstract: The abundance of tumour-infiltrating T-cells has been associated with microsatellite instability (MSI) and a favourable prognosis in colorectal cancer. However, numerous molecular alterations have been associated with clinical outcome, and potentially confounding the biological and prognostic significance of tumour-infiltrating T-cells. We utilized a database of clinically and molecularly-annotated colon and rectal carcinoma cases (N = 768; stage I-IV) in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study) and quantified the densities of CD3(+), CD8(+), CD45RO(+) (PTPRC), and FOXP3(+) cells within neoplastic epithelial areas using an Ariol image analysis system and tissue microarray. We used Cox proportional hazard models to compute the mortality hazard ratio, adjusting for clinical and molecular features including KRAS, BRAF, and PIK3CA mutations, MSI, CIMP, and LINE-1 hypomethylation. The densities of CD8(+), CD45RO(+), and FOXP3(+) cells were significantly associated with patient survival in univariate analyses (P(trend) < 0.007). In the multivariate model, tumour-infiltrating CD45RO(+)-cell density, but not CD3(+), CD8(+) or FOXP3(+)-cell density, was significantly associated with survival (p = 0.0032). In multivariate linear regression analysis, MSI-high (p < 0.0001) and high-level tumour LINE-1 methylation (p = 0.0013) were independently associated with higher CD45RO(+)-cell density. The survival benefit associated with CD45RO(+) cells was independent of MSI and LINE-1 status. In conclusion, tumour-infiltrating CD45RO(+)-cell density is a prognostic biomarker associated with longer survival of colorectal cancer patients, independent of clinical, pathological, and molecular features. In addition, MSI-high and tumour LINE-1 methylation level are independent predictors of CD45RO(+)-cell density. Our data offer a possible mechanism by which MSI confers an improved clinical outcome and support efforts to augment the host immune response in the tumour microenvironment as a strategy of targeted immunotherapy.

483 citations

Journal ArticleDOI
TL;DR: The human population data may provide an impetus for further investigations on potential interactive roles of Fusobacterium and host immunity in colon carcinogenesis, and the amount of tissue F nucleatum is inversely associated with CD3+ T-cell density in colorectal carcinoma tissue.
Abstract: Importance Evidence indicates a complex link between gut microbiome, immunity, and intestinal tumorigenesis. To target the microbiota and immunity for colorectal cancer prevention and therapy, a better understanding of the relationship between microorganisms and immune cells in the tumor microenvironment is needed. Experimental evidence suggests thatFusobacterium nucleatummay promote colonic neoplasia development by downregulating antitumor T cell–mediated adaptive immunity. Objective To test the hypothesis that a greater amount ofF nucleatumin colorectal carcinoma tissue is associated with a lower density of T cells in tumor tissue. Design, Setting, and Participants A cross-sectional analysis was conducted on 598 rectal and colon carcinoma cases in 2 US nationwide prospective cohort studies with follow-up through 2006, the Nurses’ Health Study (participants enrolled in 1976) and the Health Professionals Follow-up Study (participants enrolled in 1986). Tissue collection and processing were performed from 2002 through 2008, and immunity assessment, 2008 through 2009. From 2013 through 2014, the amount ofF nucleatumin colorectal carcinoma tissue was measured by quantitative polymerase chain reaction assay; we equally dichotomized positive cases (high vs low). Multivariable ordinal logistic regression analysis was conducted in 2014 to assess associations of the amount ofF nucleatumwith densities (quartiles) of T cells in tumor tissue, controlling for clinical and tumor molecular features, including microsatellite instability, CpG island methylator phenotype, long interspersed nucleotide element-1 (LINE-1) methylation, andKRAS,BRAF, andPIK3CAmutation status. We adjusted the 2-sided α level to .013 for multiple hypothesis testing. Main Outcomes and Measures Densities of CD3+, CD8+, CD45RO (protein tyrosine phosphatase receptor type C [PTPRC])+, and FOXP3+T cells in tumor tissue, determined by means of tissue microarray immunohistochemical analysis and computer-assisted image analysis. Results F nucleatumwas detected in colorectal carcinoma tissue in 76 (13%) of 598 cases. Compared withF nucleatum–negative cases,F nucleatum–high cases were inversely associated with the density of CD3+T cells (for a unit increase in quartile categories of CD3+T cells as an outcome: multivariable odds ratio, 0.47 [95% CI, 0.26-0.87];Pfor trend = .006). The amount ofF nucleatumwas not significantly associated with the density of CD8+, CD45RO+, or FOXP3+T cells (P fortrend = .24, .88, and .014, respectively). Conclusions and Relevance The amount of tissueF nucleatumis inversely associated with CD3+T-cell density in colorectal carcinoma tissue. On validation, our human population data may provide an impetus for further investigations on potential interactive roles ofFusobacteriumand host immunity in colon carcinogenesis.

438 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The paradoxical roles of the tumor microenvironment during specific stages of cancer progression and metastasis are discussed, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
Abstract: Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.

5,396 citations

Journal ArticleDOI
Adam J. Bass1, Vesteinn Thorsson2, Ilya Shmulevich2, Sheila Reynolds2  +254 moreInstitutions (32)
11 Sep 2014-Nature
TL;DR: A comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project is described and a molecular classification dividing gastric cancer into four subtypes is proposed.
Abstract: Gastric cancer was the world’s third leading cause of cancer mortality in 2012, responsible for 723,000 deaths1. The vast majority of gastric cancers are adenocarcinomas, which can be further subdivided into intestinal and diffuse types according to the Lauren classification2. An alternative system, proposed by the World Health Organization, divides gastric cancer into papillary, tubular, mucinous (colloid) and poorly cohesive carcinomas3. These classification systems have little clinical utility, making the development of robust classifiers that can guide patient therapy an urgent priority. The majority of gastric cancers are associated with infectious agents, including the bacterium Helicobacter pylori4 and Epstein–Barr virus (EBV). The distribution of histological subtypes of gastric cancer and the frequencies of H. pylori and EBV associated gastric cancer vary across the globe5. A small minority of gastric cancer cases are associated with germline mutation in E-cadherin (CDH1)6 or mismatch repair genes7 (Lynch syndrome), whereas sporadic mismatch repair-deficient gastric cancers have epigenetic silencing of MLH1 in the context of a CpG island methylator phenotype (CIMP)8. Molecular profiling of gastric cancer has been performed using gene expression or DNA sequencing9–12, but has not led to a clear biologic classification scheme. The goals of this study by The Cancer Genome Atlas (TCGA) were to develop a robust molecular classification of gastric cancer and to identify dysregulated pathways and candidate drivers of distinct classes of gastric cancer.

4,583 citations

Journal ArticleDOI
TL;DR: In this Opinion article, the context-specific nature of infiltrating immune cells can affect the prognosis of patients is discussed.
Abstract: Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.

3,759 citations

Journal ArticleDOI
TL;DR: Novel aspects of the new definition include a patient-centered approach that is independent of endoscopic findings, subclassification of the disease into discrete syndrome, and the recognition of laryngitis, cough, asthma, and dental erosions as possible GERD syndromes.

3,328 citations

Journal ArticleDOI
TL;DR: The therapeutic potential of drugs targeting PI3K–Akt signalling for the treatment of cancer is discussed and the advantages and drawbacks of different treatment strategies for targeting this pathway are focused on.
Abstract: There are ample genetic and laboratory studies that suggest the PI3K-Akt pathway is vital to the growth and survival of cancer cells. Inhibitors targeting this pathway are entering the clinic at a rapid pace. In this Review, the therapeutic potential of drugs targeting PI3K-Akt signalling for the treatment of cancer is discussed. I focus on the advantages and drawbacks of different treatment strategies for targeting this pathway, the cancers that might respond best to these therapies and the challenges and limitations that confront their clinical development.

2,277 citations