scispace - formally typeset
Search or ask a question
Author

Katsunori Nakano

Bio: Katsunori Nakano is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Gene & Caspase 3. The author has an hindex of 3, co-authored 3 publications receiving 4037 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel gene named PUMA (p53 upregulated modulator of apoptosis) is identified as a target for activation by p53, and PUMA is likely to play a role in mediating p53-induced cell death through the cytochrome c/Apaf-1-dependent pathway.

2,263 citations

Journal ArticleDOI
14 Jul 2006-Cell
TL;DR: expression of TIGAR may modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired, and the decrease of intracellular ROS levels in response to TIGar may also play a role in the ability of p53 to protect from the accumulation of genomic damage.

1,803 citations

Journal ArticleDOI
31 Aug 2000-Oncogene
TL;DR: The identification of a close relative of ribonucleotide reductase, recently named p53R2, as a p53-inducible gene, supports a direct role for p53 in DNA repair, in addition to inhibition of growth of damaged cells.
Abstract: Many p53-inducible genes have been identified that might play a role in mediating the various downstream activities of p53. We have identified a close relative of ribonucleotide reductase, recently named p53R2, as a p53-inducible gene, and show that this gene is activated by several stress signals that activate a p53 response, including DNA damaging agents and p14ARF. p53R2 expression was induced by p53 mutants that are defective for the activation of apoptosis, but retain cell cycle arrest function, although no induction of p53R2 was seen in response to p21WAF1/CIP1-mediated cell cycle arrest. Several isoforms of the p53 family member p73 were also shown to induce p53R2 expression. Transient ectopic expression of either wild type p53R2 or p53R2 targeted to the nucleus, did not significantly alter cell cycle progression in unstressed cells. The identification of this gene as a p53 target supports a direct role for p53 in DNA repair, in addition to inhibition of growth of damaged cells.

245 citations


Cited by
More filters
Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.

4,741 citations

Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: New insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, but a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Abstract: BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.

4,246 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations