scispace - formally typeset
Search or ask a question
Author

Katsuro Hayashi

Bio: Katsuro Hayashi is an academic researcher from Kyushu University. The author has contributed to research in topics: Ion & Electride. The author has an hindex of 42, co-authored 142 publications receiving 5468 citations. Previous affiliations of Katsuro Hayashi include University of Tokyo & Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
01 Aug 2003-Science
TL;DR: The removal of clathrated oxygen ions from the crystallographic cages in a single crystal of 12CaO·7Al2O3, leading to the formation of high-density electrons highly localized in the cages, may be regarded as a thermally and chemically stable single crystalline “electride.”
Abstract: We removed approximately 100% of clathrated oxygen ions from the crystallographic cages in a single crystal of 12CaO.7Al2O3, leading to the formation of high-density (approximately 2 x 10(21) cm-3) electrons highly localized in the cages. The resulting electron forms a structure that we interpret as an F+ center and migrates throughout the crystal by hopping to a neighboring cage with conductivity approximately 100 siemens per centimeter, demonstrating that the encaged electron behaves as an anion. The electron anions couple antiferromagnetically with each other, forming a diamagnetic pair or singlet bipolaron. The resulting [Ca24Al28O64]4+(4e-) may be regarded as a thermally and chemically stable single crystalline "electride."

719 citations

Journal ArticleDOI
TL;DR: The opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials are discussed.
Abstract: During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

532 citations

Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: Here it is demonstrated a process by which the transparent insulating oxide 12CaO·7Al2O3 (refs 7–13) can be converted into an electrical conductor and suggested that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.
Abstract: Materials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications1,2,3,4,5,6. To this end, various transparent oxides composed of transition or post-transition metals (such as indium tin oxide) are rendered electrically conducting by ion doping1,2,3,4,5,6. But such an approach does not work for the abundant transparent oxides of the main-group metals. Here we demonstrate a process by which the transparent insulating oxide 12CaO·7Al2O3 (refs 7–13) can be converted into an electrical conductor. H- ions are incorporated into the subnanometre-sized cages of the oxide by a thermal treatment in a hydrogen atmosphere; subsequent irradiation of the material with ultraviolet light results in a conductive state that persists after irradiation ceases. The photo-activated material exhibits moderate electrical conductivity (∼0.3 S cm-1) at room temperature, with visible light absorption losses of only one per cent for 200-nm-thick films. We suggest that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.

413 citations

Journal ArticleDOI
TL;DR: This work presents an oxyhydride of the perhaps most well-known perovskite, BaTiO(3), as an O(2-)/H(-) solid solution with hydride concentrations up to 20% of the anion sites, which is electronically conducting, and stable in air and water at ambient conditions.
Abstract: In oxides, the substitution of non-oxide anions (F(-),S(2-),N(3-) and so on) for oxide introduces many properties, but the least commonly encountered substitution is where the hydride anion (H(-)) replaces oxygen to form an oxyhydride. Only a handful of oxyhydrides have been reported, mainly with electropositive main group elements or as layered cobalt oxides with unusually low oxidation states. Here, we present an oxyhydride of the perhaps most well-known perovskite, BaTiO(3), as an O(2-)/H(-) solid solution with hydride concentrations up to 20% of the anion sites. BaTiO(3-x)H(x) is electronically conducting, and stable in air and water at ambient conditions. Furthermore, the hydride species is exchangeable with hydrogen gas at 400 °C. Such an exchange implies diffusion of hydride, and interesting diffusion mechanisms specific to hydrogen may be at play. Moreover, such a labile anion in an oxide framework should be useful in further expanding the mixed-anion chemistry of the solid state.

231 citations

Journal ArticleDOI
TL;DR: A metallic state in a nanostructured porous crystal 12CaO x 7Al2O3 is reported by incorporating electrons in the inherent subnanometer-sized cages, in which a three-dimensionally closely packed cage structure acts as an electronic conduction path.
Abstract: We report a metallic state in a nanostructured porous crystal 12CaO x 7Al2O3 by incorporating electrons in the inherent subnanometer-sized cages, in which a three-dimensionally closely packed cage structure acts as an electronic conduction path. High-density electron doping ( approximately 2 x 10(21) cm(-3)), which was achieved by a thermal treatment in Ti metal vapor at approximately 1100 degrees C, induces homogenization of the cage geometry to a symmetric state, resulting in an insulator-metal transition with a sharp enhancement of the electron drift mobility from approximately 0.1 to 4 cm(2) V(-1) s(-1). The results provide an approach for the realization of electroactive functions in materials composed only of environmentally benign elements by utilizing the appropriate nanostructures.

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
TL;DR: The Robust Envelope Construction Details for Buildings of the 21st Century (ROBUST) project as mentioned in this paper was supported by the Research Council of Norway, AF Gruppen, Glava, Hunton Fiber as, Icopal, Isola, Jackon, maxit, Moelven ByggModul, Ramboll, Skanska, Statsbygg and Takprodusentenes forskningsgruppe through the SINTEF/NTNU research project.

1,127 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive review with respect to the structure, chemistry, design and selection of materials, underlying mechanisms, and performance of each SOFC component, and it opens up the future directions towards pursuing SOFC research.

1,119 citations

Journal ArticleDOI
TL;DR: Haegyeom Kim,†,∥ Jihyun Hong,‚∥ Kyu-Young Park,*,∥ Hyungsub Kim,*,‡,∢ Sung-Wook Kim, and Kisuk Kang are authors of this paper.
Abstract: Haegyeom Kim,†,∥ Jihyun Hong,†,∥ Kyu-Young Park,†,∥ Hyungsub Kim,†,∥ Sung-Wook Kim, and Kisuk Kang*,†,‡ †Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-742, Republic of Korea ‡Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-742, Republic of Korea Nuclear Fuel Cycle Development Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea

1,103 citations

Journal ArticleDOI
TL;DR: Kinetic analysis with infrared spectroscopy reveals that C12A7:e(-) markedly enhances N(2) dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12 a7: e(-) to store hydrogen reversibly.
Abstract: Methods that fix atmospheric nitrogen to ammonia under mild conditions could offer a more environmentally benign alternative to the Haber–Bosch process. Now, a Ru-loaded electride, [Ca24Al28O64]4+(e−)4, is reported that acts as an efficient electron donor and reversible hydrogen store, and is demonstrated to function as an efficient catalyst for ammonia synthesis.

997 citations